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Abstract

This paper studies mechanism design in environments where a designer can only commit to

deterministic mechanisms. If there is one agent, stochastic mechanisms may strictly dominate

deterministic mechanisms. The main theorem shows an equivalence between stochastic and

deterministic mechanisms, whenever there are two or more agents. The equivalence is achieved

through an indirect deterministic mechanism. The paper goes on to show a deterministic revela-

tion principle: Under ex-post implementation, direct deterministic mechanisms suffice, provided

the set of outcomes is binary.
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1 Introduction

Mechanism design often utilizes stochastic mechanisms. These are mechanisms whose outcomes

depend on both the actions of the participants and the realization of a randomization device.

Stochastic mechanisms are undesirable in settings where agents can only observe the realization of

the randomization device, but not the randomization device itself. In such settings, the designer

may have an incentive to alter the way the mechanism introduces stochasticity. As a consequence,

the designer may not be able to commit to the randomization device, even if she can commit to

other aspects of the mechanism. For instance, the optimal mechanism may involve a seller taking

payment with certainty and randomizing over whether or not to allocate a set of objects. (See

Manelli and Vincent [2007].) However, the seller may have an incentive to alter the mechanism’s

randomization to simply keep the objects.

The lack of commitment to stochastic mechanisms is well understood. For instance, Jehiel et al.

[2006] observed that “a stochastic mechanism demands not only that a randomization device be

available to the mechanism designer, but also that the outcome of the randomization device be

objectively verified.” Laffont and Martimort [2002] pointed out that “[e]nsuring this verifiability

is a more difficult problem than ensuring that a deterministic mechanism is enforced, because

any deviation away from a given randomization can only be statistically detected once a sufficient

number of realizations of the contracts have been observed.”

Deterministic and stochastic mechanisms are not equivalent in settings with one agent. Manelli

and Vincent [2007], Manelli and Vincent [2006], and Pycia [2006] each provide examples where the

designer is strictly better off by using a randomization device. In fact, Proposition B.1 in Online

Appendix B shows that this holds in a broad class of settings with one agent and three or more

outcomes. In such settings, there is always a designer that would be strictly better off with a

stochastic mechanism.

This paper shows that the dominance of stochastic mechanisms is particular to the one agent

environment. The main theorem states that stochastic and deterministic mechanisms are outcome

equivalent in settings with multiple agents. That is, any distribution of outcomes that can be

achieved with a stochastic mechanism can also be achieved by a deterministic mechanism. So,

there is no loss in only using deterministic mechanisms. Importantly, the constructed deterministic

mechanism that achieves this equivalence may not be direct, in the sense of the revelation principle.

In particular, it may require the agents to report more than simply their types. As Strausz [2003]

points out, the deterministic version of the revelation principle does not hold in general.

The paper also provides a sufficient condition for a deterministic version of the revelation prin-

ciple under ex-post implementation. If the outcome set is binary, a deterministic version of the

revelation principle holds. This result is relevant for binary social decision problems with no trans-

fers. Examples include a jury deciding whether a suspect is innocent or guilty, a faculty committee

deciding whether or not to tenure a faculty member, etc. An implication of the result is that there

is no loss in only using deterministic direct mechanisms.

The results contribute to a recent literature in mechanism design that explores the scope of

2



deterministic mechanisms. For instance, Jehiel et al. [2006] analyzes ex-post implementable direct

deterministic mechanisms in settings with a continuum set of types. Jarman and Meisner [2017] an-

alyzes the scope of direct deterministic mechanisms that are implementable in dominant strategies.

Chen, He, Li, and Sun [2019] analyzes the scope of Bayesian incentive compatible direct determin-

istic mechanisms in settings with finite alternatives, independent types, and atomless distributions.

The equivalence result here departs from the literature, in the sense that it makes use of indirect

deterministic mechanisms.

The proof of the equivalence result shows that, when there are two or more agents, the realization

of a randomization device can be replicated by agents’ behavior in a particular indirect mechanism.

This step is reminiscent of a literature in repeated games, which replicates a public correlation

device by having players use jointly controlled lotteries. (See. e.g., Aumann, Maschler, and Stearns

[1968] and Fudenberg and Maskin [1991].) Because the structure of repeated incentives are different

from the incentives here, the nature of the proofs differ.

2 Model

Through this paper take the following conventions. Endow a Polish space Ω with the Borel sigma

algebra. Denote by ∆(Ω) the set of probability measures on Ω and endow ∆(Ω) with the topology

of weak convergence. Endow the product of topological spaces with the product topology. In

addition, for any given set of indices I and family of sets (Ωi)i∈I write Ω−i =
∏
j∈I\{i}Ωj and

Ω =
∏
i∈I Ωi.

2.1 Environment

The set of agents is I = {1, ..., n}. For each agent i there is a set of types Θi which is a compact

metric space. The type profile (θi : i ∈ I) is drawn from a common prior µ ∈ ∆(Θ) with full

support.1 Each agent i learns θi ∈ Θi, but not θ−i ∈ Θ−i. There is a compact metric space of

outcomes Y . The Bernoulli utility function of agent i is a continuous function ui : Θ× Y → R.

The designer does not know the agents’ types. She seeks to maximize a continuous function

π : Θ×Y → R given the prior µ. Examples of these objectives are revenue maximization, utilitarian

welfare, etc.

2.2 Mechanisms

A mechanism is a tuple M = (R,m) described as follows: The set of report profiles R is a

product set
∏
iRi, where each Ri is a compact metric set of reports for i. The measurable mapping

m : R → ∆(Y ) is the mechanism’s protocol. The mechanism M = (R,m) corresponds to a game

in which agents simultaneously choose reports r = (r1, ..., rn) ∈ R and the mechanism randomly

selects an outcome according to m(r) ∈ ∆(Y ). Call the mechanism M deterministic if, for each

profile of reports r ∈ R, the support of m(r) is a singleton.

1The results in the paper do not depend on the common prior assumption.
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A mixed strategy for i is a measurable map σi : Θi → ∆(Ri). Write σ = (σ1, ..., σn) for a strategy

profile. With abuse of notation, let σ(θ) ∈ ∆(R) be the product of measures (σ1(θ1),...,σn(θn)) ∈∏
i∈I ∆(Ri). Write

E[ui | M, σ, θ] =

∫
y∈Y

∫
r∈R

ui(θ, y) dσ(θ) dm(r),

for i’s expected utility, under the mechanismM, given a strategy profile σ and a type profile θ ∈ Θ.

Define E[ui | M, (ri, σ−i), θ] likewise.

Definition 2.1. A strategy profile σ is an ex-post equilibrium for the mechanism M if, for each

θ ∈ Θ and each report ri ∈ Ri, E[ui | M, σ, θ] ≥ E[ui | M, (ri, σ−i), θ].

In an ex-post equilibrium, each type θi’s distribution of actions σi(θi) is optimal given each type

profile of the other agents and the behavior specified by σ−i.

The designer’s ex-ante payoff from a strategy profile σ under M is given by

E[π | M, σ] =

∫
θ∈Θ

∫
r∈R

∫
y∈Y

π(θ, y) dm(r) dσ(θ) dµ.

The designer’s problem is to find a mechanism M and an ex-post equilibrium σ thereof that

maximizes the value E[π | M, σ].

Say that a mechanism M = (R,m) is direct if R = Θ. In a direct mechanism, the strategy

σ∗i is honest if, for each θi ∈ Θi, σ
∗
i (θi)(θi) = 1. So, under the honest strategy profile, each agent

truthfully reports their type. A direct mechanism M is called ex-post incentive compatible

(EPIC) if the honest strategy profile is an ex-post equilibrium.

The revelation principle states that, for each ex-post equilibrium of a mechanism, there is

an EPIC direct mechanism where the honest strategy profile provides the same distribution of

types/outcomes as the ex-post equilibrium; thus, it provides the same payoffs to each agent and

the designer. (See Bergemann and Morris [2008] for this formalization.)

3 Stochastic vs. Deterministic Mechanisms

This section explores the scope of stochastic mechanisms versus deterministic mechanisms. (It does

not restrict attention to direct deterministic mechanisms.) We show that the key feature is whether

or not there are at least two agents.

3.1 Dominance

If there is only one agent, stochastic mechanisms can dominate deterministic mechanisms. This is

illustrated by the following example.

Example 3.1. Dominance of Stochastic Mechanisms. There is one agent with a set of types

Θ =
{
θ, θ
}

. The common prior assigns µ(θ) = 1
2 . The set of outcomes is Y = {y1, y2, y3}. For

each θ ∈ Θ and yk ∈ Y , the utility of the agent is given by u(θ, yk) = k. The designer’s utility is
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π(θ, y) = 1 if (θ, y) ∈ {(θ, y1), (θ, y2), (θ, y3)} and π(θ, y) = 0, otherwise. Notice that preferences

are state independent for the agent but not for the designer.

There is an EPIC direct mechanism that gives the designer an expected payoff of 1. To see

this, let M = (Θ,m) be such that (i) m(θ) selects y2 with probability one and (ii) m(θ) equally

randomizes between outcomes y1 and y3. Notice that, for each type, each report provides the agent

an expected utility of 2. So, M is EPIC and gives an expected payoff of 1 to the designer under the

honest strategy profile.

By contrast, in each deterministic mechanism (direct or indirect), the designer gets a payoff of
1
2 . To see this, fix a deterministic mechanism M = (R,m) and write Y (M) = ∪r∈RSupp (m(r))

for the set of reachable outcomes of M. Since M is deterministic, the agent effectively chooses

an outcome y ∈ Y (M) by choosing its associated report. In any equilibrium, each type selects its

optimal outcome in Y (M). Since both types share the same strict preferences, both types select the

same outcome y ∈ Y (M). Thus, the mechanism provides a expected payoff of 1
2 to the designer.

Online Appendix B extends Example 3.1 to a broad class of settings with one agent and three

or more outcomes. In these settings, there is always some objective of the designer for which some

stochastic mechanism dominates all deterministic mechanisms.2

3.2 Equivalence

In settings with two or more agents, stochastic and deterministic mechanisms are equivalent. The

key is that if agents use mixed strategies, the designer can use the realization of the mixed strate-

gies to mimic a randomization device. Importantly, this is possible without giving incentives to

manipulate the randomization device or misreport their private information. We now explain how.

Let n ≥ 2. Fix an EPIC direct mechanismM = (Θ,m). We construct an indirect deterministic

mechanism that induces the same distribution of outcomes that M induces.

Write λ ∈ ∆([0, 1]) for the Lebesgue probability measure conditional on [0, 1]. Fix a type profile

θ ∈ Θ, and consider the probability measure m(θ) ∈ ∆(Y ). Lemma A.1 shows that there is a

measurable mapping gθ : [0, 1]→ Y such that, for each measurable A ⊆ Y , m(θ)(A) = λ(g−1
θ (A)).

(This uses ideas from the inverse transformation method.) So, if the designer can “construct” a

random variable u uniform in [0,1], then she can simulate a randomization device following the

distribution m(θ) by selecting the outcome gθ(u) ∈ Y . We construct a mechanism where u is

derived from the agents’ mixing.

Write R̂i = Θi × [0, 1] for the set of reports for i and write R̂ =
∏
i∈I R̂i. Define ŷ : R̂ → Y

so that ŷ(θ′, s) = gθ′ (res (
∑n

k=1 sk)), where res(x) = x − bxc is the integer residual of x ∈ R. In

the induced deterministic mechanism, after observing θi, each agent i reports a type θ′i ∈ Θi and

a number si ∈ [0, 1], where si is a supplemental report. The mechanism observes both the type

and supplemental reports, θ′ = (θ′1, ..., θ
′
n) and s = (s1, ..., sn), and deterministically selects the

outcome ŷ(θ′, s). Write m̂ : R̂ → ∆(Y ) for the mapping such that m̂(θ′, s) assigns probability one

2This is different from the classic equivalence result in the problem of selling an indivisible object, which assumes
that the objective takes a particular form.
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to ŷ(θ′, s). Call M̂ = (R̂, m̂) the deterministic mechanism induced by M. Notice that M̂ is

deterministic but not direct.

There is an honest-uniform strategy σ̂i : Θi → ∆(R̂i) such that, for each θi ∈ Θi, (1)

marg Θi
σi(θi)(θi) = 1 and (2) marg [0,1]σ̂i(θi) is uniform on [0, 1]. In the honest-uniform strategy

profile σ̂ = (σ̂1, ..., σ̂n) each agent i truthfully reports her type θi and uniformly draws a supple-

mental report si ∈ [0, 1].

It remains to show that σ̂ is an ex-post equilibrium of M̂ and that σ̂ is payoff equivalent to

the honest strategy profile of M. These will follow from a key property of M̂ and σ̂: Fix an agent

i ∈ I and a number c ∈ R. Lemma A.2 shows that if si is a uniform random variable on [0, 1],

then u = res(c+ si) is also a uniform random variable on [0, 1]. Different values c ∈ R may lead to

different realizations of u but do not change its distribution. So, as long as there is some agent i

that selects si uniformly on [0, 1], then the integer residual of the sum of the supplemental reports

is uniform on [0, 1]—independently of the strategies of the other agents. This property implies the

following result.

Lemma 3.1. Let n ≥ 2. Fix a direct mechanismM and let σ∗ be the honest strategy profile thereof.

If M̂ is a deterministic mechanism induced byM and σ̂ is the honest-uniform strategy profile, then

(i) E[π | M̂, σ̂] = E[π | M, σ∗], and

(ii) for each (θ′i, s
′
i) ∈ Ri and θ ∈ Θ, E[ui | M̂, ((θ′i, s

′
i), σ̂−i), θ] = E[ui | M, (θ′i, σ

∗
−i), θ].

Part (i) states that the designer gets the same payoffs in M and its induced deterministic

mechanism M̂. Part (ii) states that agent i’s payoff under M̂ and σ̂−i does not depend on the

supplemental report s′i. Moreover, the agent’s payoff of reporting (θ′i, s
′
i) is given by her payoff of

reporting θ′i on the mechanism M. Lemma 3.1 immediately implies the following result.

Theorem 3.1. Let n ≥ 2. Fix an EPIC direct mechanism M and let σ∗ be the honest strategy

profile thereof. If M̂ is a deterministic mechanism induced by M and σ̂ is the honest-uniform

strategy profile, then

(i) E[π | M̂, σ̂] = E[π | M, σ∗],

(ii) E[ui | M̂, σ̂, θ] = E[ui | M, σ∗, θ], and

(iii) the strategy profile σ̂ is an ex-post equilibrium of M̂.

Theorem 3.1 states that the honest-uniform profile is an ex-post equilibrium and provides the

same payoffs to the agents and the designer as the original EPIC deterministic mechanism M.

Online Appendix C shows that this result also holds with Bayesian equilibrium as the solution

concept.

The revelation principle states that each distribution of equilibrium outcomes can be generated

by an EPIC direct mechanism where agents report truthfully. The analyst typically approaches

mechanism design problems by focusing on EPIC direct mechanisms. Theorem 3.1 gives the analyst

a route to do so, even if they are only interested in implementing deterministic mechanisms. The

analyst can freely analyze the problem by using direct stochastic mechanisms, even if they are

6



focused on a designer who chooses the optimal (potentially indirect) deterministic mechanism. The

analyst can then think of a designer as implementing the latter mechanism.

4 Stochastic vs. Deterministic Direct Mechanisms

It is important to remark that Theorem 3.1 is not a deterministic version of the revelation principle.

The mechanism constructed for the equivalence result is not direct, in the sense that it requires

agents to both report a type and a number. This section explores the equivalence of stochastic and

deterministic direct mechanisms under ex-post implementation.

4.1 Dominance

The example below shows that, when there are three or more outcomes, (i.e. |Y | ≥ 3) deterministic

direct mechanisms can be dominated by stochastic direct mechanisms, even when n ≥ 2. So, a

deterministic version of revelation principle for environments with three or more outcomes does not

hold.3

Example 4.1. This is a two agent version of Example 3.1, where only agent 1 has private infor-

mation. Set Θ1 = {θ, θ} and suppress reference to Θ2. The outcome set is Y = {y1, y2, y3} and

the payoff functions of the designer and agent 1 are the same as in Example 3.1. Thus, there is an

EPIC direct mechanism that provides a payoff 1 to the designer. However, no deterministic direct

mechanism can provide the designer with a guaranteed payoff of one. To see this, note that agent

2 does not have private information and so only agent 1 is active in a direct mechanism. So, as in

Example 3.1, for each direct deterministic mechanism M, agent 1 chooses an outcome from the set

of reachable outcomes Y (M). Since both types of agent 1 share the same strict preferences, they

both select the same outcome.

Notice that the non-equivalence holds in direct mechanisms since agent 2 is inactive. Theorem

3.1 shows that the equivalence can hold in a mechanism where both agents are active.

4.2 Equivalence

We now show that a deterministic version of a revelation principle holds in settings with binary

outcomes and ex-post implementation. To do so, it will be useful to endow the set of mechanisms

with a linear structure.

Fix a binary outcome set Y . Write SM(Y ) for the set of finite signed measures over Y . It will

be useful to consider the vector space

V :=

{
m : Θ→ SM(Y ) : m is measurable and sup

(θ,y)∈Θ×Y
m(θ)(y) <∞

}
,

3 This is essentially the point in Strausz [2003]. In fact, he proves an even stronger statement. He shows that the
set of direct deterministic mechanisms can be dominated not only by general stochastic mechanisms, but also by
deterministic indirect mechanisms.
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endowed with the operations of addition and multiplication by scalars inherited from SM(Y ).

Additionally, endow V with the supremum norm given by ||m||∞ = sup(θ,y)∈Θ×Y m(θ)(y).

Write M = {m ∈ V | m(θ) ∈ ∆(Y ) for each θ ∈ Θ}. So, m ∈ M if and only if (Θ,m) is a

direct mechanism. Write MEPIC := {m ∈ M | (Θ,m) is EPIC} and write MD-EPIC := {m ∈ M |
(Θ,m) is deterministic and EPIC }. Notice that MD-EPIC ( MEPIC ⊆ M ( V and that MEPIC is

bounded, closed, and convex. (See Lemma A.4.)

Lemma 4.1. If |Y | = 2, then MD-EPIC is the set of extreme points of MEPIC.

Lemma 4.1 provides the key geometric property of the set of EPIC mechanisms. Notice that

Example 4.1 shows that Lemma 4.1 does not hold in settings with three or more outcomes. In that

example, if (Θ,m) is the optimal direct mechanism of the designer’s problem, then m is an extreme

point of MEPIC but m is not deterministic.

Now we describe the designer’s problem. Let Π : V → R be a function given by

Π(m) =

∫
θ∈Θ

∫
y∈Y

π(θ, y) dm(θ) dµ.

Note that if m ∈ M , then Π(m) is the designer’s expected payoff of the direct mechanism (Θ,m),

given the honest strategy profile. Moreover, Π is linear in V . We will compare the designer’s prob-

lem of maximizing Π over the set MEPIC to maximizing Π over MD-EPIC. Say that the designer’s

problem is well-behaved if the set MEPIC is compact and the mapping Π is continuous. So,

each well-behaved designer’s problem always has a solution.4

Theorem 4.1. If |Y | = 2 and the designer’s problem is well-behaved, then

max
m∈MD-EPIC

Π(m) = max
m∈MEPIC

Π(m).

So, the designer’s optimal mechanism is achieved by a direct deterministic mechanism.

Proof. Since MEPIC is compact and Π is linear and continuous, Π achieves a maximum over MEPIC.

In addition, MEPIC is a convex subset of a normed space (Lemma A.4) and MD-EPIC is the set of

extreme points of MEPIC (Lemma 4.1). Thus, the result follows by the Extreme Point Theorem

(Ok [2011] p. 493).

Theorem 4.1 is a deterministic version of the revelation principle for the case of binary outcomes.

It implies that, as long as the designer’s problem is well-behaved and the set of outcomes is binary,

there is no loss in focusing on deterministic direct mechanisms.

There is a question of whether Theorem 4.1 extends to Bayesian incentive compatible mech-

anisms. This remains an open question. Importantly, the proof of Lemma 4.1 does not apply to

Bayesian incentive compatible mechanisms.

4If Θ × Y is finite then V has finite dimension so MEPIC is a compact set and Π is continuous. In some other
environments, like the provision of an indivisible good with one buyer, MEPIC is compact and Π is continuous even
though Θ × Y is not finite. (See Börgers [2015].)
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Appendix A Additional Lemmata and Omitted Proofs

A.1 Proofs of Section 3

Lemma A.1. Fix some Polish space Y and some ν ∈ ∆(Y ). There is a Borel measurable mapping

g : [0, 1]→ Y such that, for each Borel E ⊆ Y , ν(E) = λ(g−1(E)).

Proof. Fix some X ⊆ [0, 1] closed such that |X| = |Y | and 0 ∈ X. By the Borel Isomorphism

Theorem, there is a bijective bimeasurable mapping φ : Y → X. (See Theorem 15.6 in Kechris

(2012).) Let $̃ ∈ ∆(X) be the image measure of ν under φ and let $ ∈ ∆([0, 1]) be the extension

of $̃ to a measure on all of [0, 1].

Write F : [0, 1]→ [0, 1] for the CDF associated with $, i.e., a function with F (x) = $([0, x]) for

each x ∈ [0, 1]. Observe that F is weakly increasing and so measurable. Moreover, F is continuous

from the right. Call each z with {x ∈ [0, 1] : F (x) < z} 6= ∅ non-trivial.

Define a new function G : [0, 1]→ [0, 1] so that

G(z) =

sup{x ∈ X : F (x) < z} if z is non-trivial

0 otherwise.

Notice that G is a weakly increasing function and so measurable. Moreover, for each x, z ∈ [0, 1],

F (x) ≥ z if and only if G(z) ≤ x. To see this, first fix x, z ∈ [0, 1] so that F (x) ≥ z. Since F

is weakly increasing, for each w ∈ [0, 1] with F (w) < z, it must be that w < x; so, G(z) ≤ x.

Conversely, assume F (x) < z. Notice that F (x) < z ≤ 1 implies x < 1. Since F is right-continuous

and x < 1, there exists ε > 0 so that F (x+ ε) < z. This implies x+ ε ∈ {w ∈ X : F (w) < z} and

so G(z) ≥ x+ ε > x, as desired.

Now notice that, for each x ∈ [0, 1],

[0, F (x)] = {z ∈ [0, 1] : F (x) ≥ z} = {z ∈ [0, 1] : G(z) ≤ x} = G−1([0, x]),

where the second equality follows from the fact that F (x) ≥ z if and only if G(z) ≤ x and the last

equality follows from the fact that G is weakly increasing. So, for each x ∈ [0, 1]

$([0, x]) = F (x) = λ([0, F (x)]) = λ(G−1([0, x])).

Since {[0, x] : x ∈ [0, 1]} generates the Borel sigma algebra on [0, 1], for each Borel measurable A

⊆ [0, 1], $(A) = λ(G−1(A)). (See Lemma 4.19 and Theorem 10.10 in Aliprantis and Border [2006]

on the generating sigma algebra.)

Now notice that G([0, 1]) ⊆ X. Clearly G(z) ∈ X if G(z) = 0. So, suppose that G(z) 6= 0.

Then z is non-trivial and, so, {x ∈ X : F (x) < z} is a non-empty subset of X. Since X is closed,

sup{x ∈ X : F (x) < z} ∈ X.

Since G([0, 1]) ⊆ X, write G : [0, 1] → X for the restriction of G to the range X; this new

function remains measurable. Now define g : [0, 1] → Y so that g = φ−1 ◦ G and note that g is
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measurable. Fix measurable E ⊆ Y . Notice that g−1(E) = G−1(φ(E)). Thus

ν(E) = $(φ(E)) = λ(G−1(φ(E))) = λ(g−1(E)),

where the first equality follows from the fact that φ is a bijective and bimesurable.

Lemma A.2. Let (Ω,F ,P) be a probability space with a random variable u that follows a uniform

distribution on [0, 1]. Then, for each c ∈ R, res(c+ u) follows uniform distribution on [0, 1].

Proof. Fix c ∈ R and note that there exists an integer x so that c = x+ res(c). It suffices to show

that P(res(c+ u) ≤ a) = a.

First suppose res(c) ≤ a. Fix a realization of the random variable u, namely u. If c+u < x+ 1,

then res(c+ u) ≤ a if and only if u ≤ a− res(c). If c+ u ≥ x+ 1, then res(c+ u) ≤ a if and only if

u > 1−res(c). (This uses the fact that res(res(c)+u) ≤ a, since res(c) ≤ a implies res(c)+u ≤ 1+a.)

Thus,

P(res(c+ u) ≤ a) = P(0 ≤ u < a− res(c)) + P(1− res(c) ≤ u ≤ 1) = a− res(c) + res(c) = a.

Now suppose res(c) > a. Fix a realization of the random variable u, namely u. Notice res(c+

u) ≤ a if and only if u ∈ [1 − res(c), 1 − res(c) + a]. (This uses the fact that res(res(c) + u) ≤ a if

res(c) + u ≥ 1 and res(c) + u ≤ 1 + a.) Thus,

P(res(c+ u) ≤ a) = P(1− res(c) ≤ u ≤ 1− res(c) + a) = a.

So P(res(c+ u) ≤ a) = a as desired.

Lemma A.3. Let (Ω,F ,P) be a probability space with n independent uniform random variables

u1, ...un on [0, 1]. Then, for each c ∈ R, res (c+
∑n

k=1 uk) follows a uniform distribution on [0, 1].

Proof. Fix c ∈ R. If n = 1, Lemma A.2 establishes the result. Assume that n > 1. Let

P( · |
∑n−1

k=1 uk) be a regular version of conditional probability for the sigma-algebra generated

by
∑n−1

k=1 uk. Note that for each a ∈ (0, 1) and each c′ ∈ R,

P
(

res (c+
∑n

k=1 uk) ≤ a
∣∣∣ ∑n−1

k=1 uk = c′
)

= P
(

res(c+ c′ + un) ≤ a
∣∣∣ ∑n−1

k=1 uk = c′
)
.

In addition, by independence, it follows that

P
(

res(c+ c′ + un) ≤ a
∣∣∣ ∑n−1

k=1 uk = c′
)

= P (res(c+ c′ + un) ≤ a) , a.s.

Note that P (res(c+ c′ + un) ≤ a) = a. (See Lemma A.3.) Hence, for each c′ ∈ R,

P
(

res (c+
∑n

k=1 uk) ≤ a
∣∣∣ ∑n−1

k=1 uk = c′
)

= a, a.s.

11



So, by integrating over c′ ∈ R, P (res (c+
∑n

k=1 uk) ≤ a) = a, as desired.

Proof of Lemma 3.1. Begin with (i). Under the uniform-honest strategy profile σ̂, the supple-

mental reports s = (s1, ..., sn) are independent and uniformly distributed on [0, 1]. By Lemma A.3,

res (
∑n

0=1 si) follows a uniform distribution [0, 1]. Write λn for the Lebesgue measure in [0, 1]n and

Fix θ ∈ Θ. Since s ∈ [0, 1]n is uniformly distributed, ŷ(θ, s) = gθ (res (
∑n

i=1 si)) follows the same

distribution as m(θ). (See Lemma A.1.) Thus,∫
s∈[0,1]n

π(θ, ŷ(θ, s)) dλn =

∫
y∈Y

π(θ, y) dm(θ).

Therefore,

E[π | M̂, σ̂] =

∫
θ∈Θ

∫
s∈[0,1]n

π(θ, ŷ(θ, s)) dλn dµ

=

∫
θ∈Θ

∫
y∈Y

π(θ, y) dm(θ) dµ

= E[π | M, σ∗].

We show (ii). Under the uniform-honest strategy profile σ̂, s1, .., sn are independent and uni-

formly distributed on [0, 1]. Then, for each fixed s′i ∈ [0, 1], res
(
s′i +

∑n
k=1,i 6=k sk

)
follows a uniform

distribution on [0, 1]. (Use Lemma A.3 with c = s′i and uk = sj for j 6= i). Write λn−1 for the

Lebesgue measure on [0, 1]n−1. Then ŷ((θ′i, θ−i), (s
′
i, s−i)) = g(θ′i,θ−i)(res(s′i +

∑
j 6=i sj))) follows the

same distribution as m(θ′i, θ−i) and∫
s−i∈[0,1]n−1

ui(θ, ŷ((θ′i, θ−i), (s
′
i, s−i))) dλ

n−1 =

∫
y∈Y

ui(θ, y) dm(θ′i, θ−i).

Therefore,

E[ui | M̂, ((θ′i, s
′
i), σ̂−i), θ] =

∫
s−i∈[0,1]n−1

ui(θ, ŷ((θ′i, θ−i), (s
′
i, s−i))) dλ

n−1

=

∫
y∈Y

ui(θ, y) dm(θ′i, θ−i)

= E[ui | M, (θ′i, σ
∗
−i), θ],

as desired.

A.2 Proofs of Section 4

Lemma A.4. The set MEPIC is non-empty, bounded, closed, and convex.

12



Proof. First we show that MEPIC is not empty. Let m : Θ → ∆(Y ) be a mapping such that

m(θ) = m(θ′) for each θ, θ′ ∈ Θ. Since m does not depend of the agents’ reports, (Θ,m) is an

EPIC direct mechanism. So, m ∈MEPIC 6= ∅. Also note that MEPIC is bounded, since ||m||∞ ≤ 1

for each mechanism.

It remains to show that MEPIC is closed and convex. Fix θi, θ
′
i and θ−i. Write Wi(θi, θ

′
i, θ−i)

for the set of vectors m ∈M that satisfies the EPIC constraint∫
y∈Y

(ui(θi, θ−i, y)− ui(θ′i, θ−i, y)) dm(θi, θ−i) ≥ 0 (1)

for (θi, θ
′
i, θ−i). Notice that the constraint is linear and has a weak inequality. Hence, the set

Wi(θi, θ
′
i, θ−i) is closed and convex. Since

MEPIC =
⋂
i∈I

⋂
θi∈Θi

⋂
θ′i∈Θi

⋂
θ−i∈Θ−i

Wi(θi, θ
′
i, θ−i),

it follows that MEPIC is convex and closed.

Say m′ ∈ M is a uniform monotone transformation of m ∈ M if, for each y ∈ Y , there is

a weakly increasing function fy : [0, 1]→ [0, 1] such that m′(θ)(y) = fy(m(θ)(y)) for each θ ∈ Θ.

Lemma A.5. Assume that |Y | = 2. If m ∈MEPIC, and m′ ∈M is a uniform monotone transfor-

mation of m, then m′ ∈MEPIC.

Proof. Let Y = {y, y} and suppose that m′ is a uniform monotone transformation of m ∈MEPIC.

Then, for each y ∈ Y , there exists a weakly increasing function fy such that m′(θ)(y) = fy(m(θ)(y)).

Fix θi, θ
′
i ∈ Θi, θ−i ∈ Θ−i. Since m is ex-post implementable, then for each θ−i ∈ Θ−i,∑

y∈Y
ui(θi, θ−i, y) ·m(θi, θ−i)(y) ≥

∑
y∈Y

ui(θi, θ−i, y) ·m(θ′i, θ−i)(y). (2)

It suffices to show∑
y∈Y

ui(θi, θ−i, y) ·m′(θi, θ−i)(y) ≥
∑
y∈Y

ui(θi, θ−i, y) ·m′(θ′i, θ−i)(y). (3)

If ui(θi, θ−i, y) = ui(θi, θ−i, y), Equation (3) is trivially satisfied. So, without loss of general-

ity suppose ui(θi, θ−i, y) > ui(θi, θ−i, y). (If ui(θi, θ−i, y) < ui(θi, θ−i, y), an analogous argument

applies.)

In this case, Equation (2) implies that m(θi, θ−i)(y) ≥ m(θ′i, θ−i)(y). Since fy is weakly increas-

ing, fy(m(θi, θ−i)(y)) ≥ fy(m(θ′i, θ−i)(y)). So, m′(θi, θ−i)(y) ≥ m′(θ′i, θ−i)(y). From this, Equation

(3) follows.
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Proof of Lemma 4.1. Let Y = {y, y}. Observe that any m ∈ MD-EPIC is an extreme point of

MEPIC. We show that, if m ∈ MEPIC is not deterministic, then m is not an extreme point of

MEPIC. To do so, we construct m1,m2 ∈MEPIC so that m = 1
2m1 + 1

2m2 and m1 6= m 6= m2.

To construct m1 and m2, Let f1 : [0, 1]→ [0, 1] and f2 : [0, 1]→ [0, 1] be two functions defined

by

f1(α) =

0 if α ≤ 1
2

2α− 1 if α > 1
2

and f2(α) =

2α if α ≤ 1
2

1 if α > 1
2 .

Notice that f1 and f2 are weakly increasing and satisfy the following:

f1(α) < α < f2(α) for each α ∈ (0, 1), and (4)

1
2 f1(α) + 1

2 f2(α) = α for each α ∈ [0, 1]. (5)

Define m1 and m2 in the following way:

mk(θ)(y) = fk(m(θ)(y)), mk(θ)(y) = 1−mk(θ)(y) for all θ ∈ Θ, k ∈ {1, 2}.

Note that by, Equation (5), that 1
2m1 + 1

2m2 = m. Secondly, since m is not deterministic, there

is a θ ∈ Θ such that m(θ)(y) ∈ (0, 1). Then, by Equation (4), m1 6= m 6= m2. It suffices to show

that m1,m2 ∈MEPIC. Since f1 and f2 are both increasing, it follows that m1 m2 are both uniform

monotone transformations of m. By Lemma A.5, the mechanisms m1 and m2 are EPIC.

14
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Ernesto Rivera Mora

Appendix B Dominance of Stochastic Mechanisms

This section shows that this the designer is strictly better off by using a randomization device in a

broad class of settings with one agent and three or more outcomes.

Fix an environment. In this environment, say that stochastic mechanisms dominate deter-

ministic mechanisms if there exist a stochastic mechanism and an ex-post equilibrium thereof

that gives the designer strictly higher payoffs than any ex-post equilibrium of any deterministic

mechanism.

Proposition B.1. Let n = 1. Suppose there is some {y1, y2, y3} ⊆ Y and some Θ̃ ⊆ Θ so that the

following hold:

(i) For each θ ∈ Θ̃, u(θ, y1) < u(θ, y2) < u(θ, y3).

(ii) There is an x ∈ (0, 1) and disjoint sets Θ̃1, Θ̃2 ⊆ Θ̃ with µ(Θ̃1) > 0 and µ(Θ̃2) > 0 so that

(a) θ ∈ Θ̃1 implies u(θ, y2) ≤ xu(θ, y1) + (1− x)u(θ, y3), and

(b) θ ∈ Θ̃2 implies u(θ, y2) ≥ xu(θ, y1) + (1− x)u(θ, y3).

Then there is an objective of the designer π : Θ× Y → R so that stochastic mechanisms dominate

deterministic mechanisms.

To better understand the assumptions of Proposition B.1, consider the case where Θ is count-

able. In that case, if |Θ̃| ≥ 2, then condition (i) implies condition (ii). So, there, the proposition

simply requires that there are two types that each prefer y3 to y2 to y1.

Proof. We will construct some objective π : Θ× Y → R so that the following hold:

(1) There is a (stochastic) EPIC direct mechanism that gives the designer a expected payoff of 1

under the honest strategy profile.

(2) For each deterministic mechanism, and each ex-post equilibrium thereof, the designer’s ex-

pected payoff is strictly less than 1.

To do so, we make use of the sets Θ̃1 and Θ̃2 in the statement of the proposition. We use these

sets to construct a measurable partition {Θ1,Θ2} of Θ as follows. First, set

Θ1 = {θ ∈ Θ : u(θ, y2) ≤ x · u(θ, y1) + (1− x) · u(θ, y3)} \Θ̃2.

Then, set Θ2 = Θ\Θ1. To see that Θ1 and Θ2 are measurable, it suffices to show that the set

{θ ∈ Θ : u(θ, y2) ≤ x · u(θ, y1) + (1− x) · u(θ, y3)} is measurable. But this follows from the fact

that u(·, y2)− xu(·, y1)− (1− x)u(·, y3) is continuous.

Now construct the objective π : Θ × Y → R. Set π(θ, y) = 1 if (θ, y) ∈ Θ1 × {y1, y3} or

(θ, y) ∈ Θ2 × {y2}. Otherwise, set π(θ, y) = 0.

1



First we show (1). Write α1 ∈ ∆(Y ) for the measure such that α1(y1) = x and α1(y3) = 1− x.

Write α2 ∈ ∆(Y ) for the measure that selects y2 with probability 1. Define the direct mechanism

(Θ,m) so that m(θ) = α1 if θ ∈ Θ1 and m(θ) = α2 if θ ∈ Θ2. Under the honest strategy, each

type of the agent gets her favorite lottery among α1 and α2. (This uses the definition of Θ1 and

Θ2.) Hence, the mechanism (Θ,m) is EPIC. Moreover, (Θ,m) provides to the designer an expected

payoff of 1 under the honest strategy profile.

Now we show (2). Fix a deterministic mechanismM′ = (R,m). For each r ∈ R, Supp (m(r)) (
Y is a singleton. Write Rk = {r ∈ R : Supp (m(r)) = yk} and fix an ex-post equilibrium σ. We

will show that the designer gets an expected payoff strictly less than 1 under σ.

To show this, first suppose that R2 = ∅. Since µ(Θ2) ≥ µ(Θ̃2) > 0, the designer’s expected

payoff is strictly less than 1, for any strategy the agent chooses.

So, suppose that R2 6= ∅ but R3 = ∅. In that case, R1 = R1 ∪ R3. Since R2 6= ∅, for each

θ ∈ Θ̃1, σ(θ)(R1 ∪ R3) = 0. (Otherwise, the agent would have an incentive to deviate, at least, to

reports in R2.) Since µ(Θ̃1) > 0, the designer’s expected payoff is strictly less than 1, under σ.

Finally, suppose that R2, R3 6= ∅. In that case, θ ∈ Θ̃2, σ(θ)(R2) = 0. (Otherwise, the agent

would have an incentive to deviate to deviate, at least, to reports in R3.) Since µ(Θ̃2) > 0, the

designer’s expected payoff is strictly less than 1, under σ.

Appendix C Bayesian Incentive Compatibility

This Appendix shows an analogue of Theorem 3.1 for Bayesian equilibrium.

Note, there is a function µi : Θi → ∆(Θ−i), where µi(θi) captures the conditional probability

of θ−i given θi. Write

E[ui | M, σ, θi] =

∫
Θ−i

∫
R

∫
Y
ui(θi, θ−i, y) dm(r) dσ(θi, θ−i) dµi(θi).

for type θi’s expected utility, under strategy profile σ in the mechanism M. Likewise write E[ui |
M, (ri, σ−i), θi] for type θi’s expected utility given the report ri and the strategy profile σ−i, in the

mechanism M.

Definition C.1. Fix a mechanism M = (R,m) and a strategy profile σ. Call σ a Bayesian

equilibrium of M if, for each θi ∈ Θi and each ri ∈ Ri, E[ui | M, σ, θi] ≥ E[ui | M, (ri, σ−i), θi].

Fix a direct mechanismM. SayM satisfies Bayesian incentive compatibility (BIC) if the

honest strategy profile is a Bayesian equilibrium.

Theorem C.1. Let n ≥ 2. Fix a a BIC direct mechanism M and let σ∗ be the honest strategy

profile thereof. If M̂ is a deterministic mechanism induced by M and σ̂ is the uniform-honest

strategy profile then

(i) E[π | M̂, σ̂] = E[π | M, σ∗],

(ii) E[ui | M̂, σ̂, θi] = E[ui | M, σ∗, θi], and
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(iii) The strategy profile σ̂ is a Bayesian equilibrium of M̂.

Proof. Fix a BIC direct mechanism M and let M̂ be the deterministic mechanism it induces. Let

σ̂ the the honest-uniform strategy profile of M̂. Lemma 3.1 states (i) and, moreover, that, for

each (θ′i, s
′
i) ∈ Ri and θ ∈ Θ, E[ui | M̂, ((θ′i, s

′
i), σ̂−i), θ] = E[ui | M, (θ′i, σ

∗
−i), θ]. By taking the

expectation over all profiles θ ∈ Θ with a given type θi, it follows that E[ui | M̂, ((θ′i, s
′
i), σ̂−i), θi] =

E[ui | M, (θ′i, σ
∗
−i), θi], and thus (ii) holds. Finally notice that

E[ui | M̂, ((θi, s
′
i), σ̂−i), θi] = E[ui | M, (θi, σ

∗
−i), θi]

≥ E[ui | M, (θ′i, σ
∗
−i), θi] = E[ui | M̂, ((θ′i, s

′
i), σ̂−i), θi].

where the inequality follows from BIC ofM. Thus, the honest-uniform strategy profile is a Bayesian

equilibrium.
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