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Abstract

Markets for information are ubiquitous in modern society. Understanding how in-

formation providers choose to sell information is important for designing policies that

improve efficiency. This paper studies markets for information when two uninformed

agents play a quadratic game and characterizes the revenue maximizing information-

selling schemes. The optimal way to sell information depends on the degree to which

agents’ actions are strategic substitutes or complements. In the case of strategic com-

plements, it is always optimal to sell perfect information to both agents. However, in

the case of strategic substitutes, there is a trade-off; revealing more information in-

creases the correlation between the agents’ actions, which in turn decreases the value of

information. If the degree of strategic substitutability is sufficiently high, it is optimal

for the seller to obfuscate information. Depending on the degree of substitutability, it is

either optimal to sell perfect information to exactly one agent, or to sell a noisy signal

to both.
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1 Introduction

This paper focuses on two important properties of information: 1) information is replica-

ble, so can be sold to multiple buyers; 2) The value of information to one buyer depends

on whether other buyers acquired the information (or not). This paper investigates the

implications of these two properties for the behavior of information sellers and buyers.

As an example, consider the firms Airbus and Boeing as information buyers, and a

consulting firm as an information seller. Here, Airbus and Boeing play a competitive game

where their utilities depend on their production/pricing actions and the demand level θ.

The parameter θ is unknown. However, the consultant can design a study that reveals θ

with the goal of selling this information to Airbus and Boeing. Nonetheless, competing

against an informed firm is different from competing against an uninformed one. Thus,

the value that Airbus assigns to observing θ may not only depend on the information

itself, but also on whether Boeing has access to θ or not. One possibility is that Airbus’

valuation of information is independent of whether Boeing also has access to θ. A second

possibility is that Airbus’ valuation decreases if Boeing also has access to θ, creating a

negative externality. A third possibility is that Airbus’ valuation increases if Boeing also

has access to θ, creating a positive externality.

The informational externalities between the buyers are relevant because they impact

the optimal way a seller offers information. For instance, the consultant could offer to

reveal θ to both firms or to only one firm. The key observation is that, as long as infor-

mational externalities are sufficiently negative, then offering information to both firms may

not maximize the consultant’s revenue. Instead, the consultant may increase her revenue

by revealing θ only to Airbus and signing a non-disclosure contract that promises to not

reveal θ to Boeing. Thus, if Airbus alone had access to θ, it would pay more for this deal

than what both firms would pay if they both had access to θ.

The first part of the paper explores the strategic interaction between a monopolistic

information seller and two information buyers that play a game. In this game the payoffs

depend on an unknown parameter θ and the actions of both players. There are two stages.

In stage one, the seller chooses a selling scheme. The selling scheme specifies the buyers’

participation fees and the information structure, i.e. the rules of what the seller reveals

about θ to each buyer. Buyers observe the selling scheme and decide to participate and

pay the fee, or to pass. In stage two, both buyers play the competitive game of incomplete

information where they use the information acquired from the seller. The seller is indifferent

about the outcome of the game, and only wishes to maximize the revenue obtained by selling

information to the buyers.

To make the problem tractable but sufficiently general, I focus on the case where the
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game’s payoffs take a quadratic and symmetric form. This family of games includes many

relevant economic environments, like some price and quantity competition oligopoly models

where the unknown parameter θ represents a scalar of the demand level. In addition, the

model assumes that: (1) the unknown parameter θ is drawn from a common prior, (2) the

seller can privately communicate to each buyer, (3) the seller commits to the selling scheme

she offers.

The first result of this paper characterizes behavior in the Bayesian game induced by

any information structure the seller chooses to offer. It states there is a unique Bayesian

equilibrium in which the agents’ strategies and expected payoffs are expressed by a simple

and convergent infinite sum of the agents’ hierarchies of expectations about the state θ.

That is, i’s action and expected payoff depend not only on the information i gets about θ,

but also on the information i gets about the information −i gets about θ, the information

i gets about the information −i gets about the information i gets about θ, and so on.

As a second result, this paper characterizes the value that each information buyer assigns

to each information structure, i.e. the value each buyer is willing to pay to receive the

private message associated with the information structure. The valuation of player i of an

information structure is the variance of i’s action that the information structure induces.

That is, the greater the degree to which i’s action moves according to the message i receives,

the more i is willing to pay for it.

The characterization of value of information structures provides the main contribution

of the paper. It provides a characterization of the selling schemes that maximize the seller

revenue and shows that they depend on the degree to which agents’ actions are strategic

substitutes or complements. For instance, provided that actions are strategic complements,

revealing the state to both players maximizes the seller’s revenue; it is sub-optimal to obfus-

cate information to either player. However, if actions are strategic substitutes, this may not

hold. With strategic substitutes there is a trade-off between the gains from providing more

information and the losses arising from increased correlation between the agents’ actions.

Different selling schemes may be optimal depending on the degree of the strategic effects.

First, with sufficiently low strategic effects, revealing the state to both players is optimal.

In this case players care more about the information itself in comparison on what the other

agent will do. Second, with stronger strategic effects, obfuscating information is optimal

and can take two different forms. Depending on the degree of strategic substitutability, the

seller may opt to completely reveal the state to only one player and reveal nothing to the

other player, or provide noisy signals to both agents.

In addition, the paper provides an analysis of revenue maximization when the seller is

constrained to publicly communicate with the players and shows that obfuscation is never

optimal. This implies that if actions are strategic substitutes with strong strategic effects,
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then the seller gets strictly better off by privately communicating with the players.

1.1 Literature Review

This paper transforms the sellers’ optimization problem into an information design problem

in the spirit of Kamenica and Gentzkow (2011) (see also Rayo and Segal (2010)). Similarly

to Mathevet et al. (2020), the buyers play a game so the seller’s objective depends on all

the hierarchies of beliefs. However, here the seller’s objective depends only on the players’

hierarchies of expectations of the unknown parameter, and not on the full description of

hierarchies of beliefs.

The seminal work of Admati and Pfleiderer (1986) is the first to study optimal informa-

tion seller schemes of a monopolistic seller. They analyze a framework where a monopolistic

information seller proves information to a continuum of agents rewarding the value of an

asset. They show that it is always optimal to sell private and noisy signals to the infor-

mation buyers. This helps the seller to protect the value of information by decreasing the

amount of information that leaks trough the asset price. Similarly, this paper shows that

obfuscating information may be the optimal way to sell information.

The paper is related to work by Bergemann and Morris (2016). Using the notion of

Bayes correlated equilibrium (BCE), Bergemann provides a characterization of the distri-

bution of equilibrium outcomes in the Bayesian games generated by all possible information

structures. However, it is silent about which distribution of outcomes corresponds to which

information structures. Bergemann and Morris (2013) characterizes the set of normally

distributed BCE in quadratic games. In contrast, this paper does not impose distributional

assumptions and characterizes Bayesian equilibrium outcomes and players’ valuation for

each information structure in quadratic games.

Finally, this paper is related to earlier work on strategic information sharing in oligopoly

models. Gal-Or (1985) shows that competitors never share private information about the

demand intercept in Cournot models. More recent work in Goltsman and Pavlov (2014)

investigates conditions under which firms can communicate their costs using a mediation

protocol. These papers explore to what extent firms can trade information for information.

In contrast, this paper explores up to what extent firms can trade information for money.

2 Model

Throughout the paper, take the following conventions. Endow a compact metric space

C with its Borel sigma algebra. Denote the set of Borel probability measures by ∆(C).

Endow the product of topological spaces with the product topology and endow ∆(C) with

the topology of weak convergence. All omitted proofs in the main text are in the Appendix.
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2.1 Environment

The set of players is I = {1, 2}. There is a compact state space Θ ⊆ [0,∞). The state θ

is drawn from a common prior µ ∈ ∆(Θ) with full support The realized state is unknown

to the players. Each player i chooses an action in a set Ai. The paper covers two cases:

A1 = A2 = [0,∞) and A1 = A2 = R.

Player i’s utility function ui : Θ×Ai ×A−i → R takes a quadratic form

ui(θ, ai, a−i) = θai − a2
i − λaia−i,

where λ is a commonly known parameter. The action ai impacts i’s utility in three ways.

First, there is a benefit of choosing ai; that benefit is increasing in the state θ. Second,

ai has a quadratic cost a2
i . Third, ai has a strategic effect given by the term −λaia−i.

If λ > 0, then the actions are strategic substitutes, i.e. the higher the action of the

co-player, the greater the incentive to decrease one’s own action. If λ < 0, then actions

are strategic complements, i.e. the higher the action of the co-player, the greater the

incentive to increase one’s own action. If λ = 0, the co-player’s action does not affect one’s

own utility, so both players face an individual decision problem.

The paper focuses on the case of mild strategic effects, i.e. environments where |λ| is

not large.1 It is assumed that λ ∈ (−2, λ). The model considers two cases. In the first

case, A1 = A2 = R and λ = 2. In the second case case, A1 = A2 = [0,∞) and λ = 2 min(Θ)
max(Θ) .

Notice that, if the domain of uncertainty is sufficiently small, i.e. if min(Θ) is close to

max(Θ), then this latter bound is close to 2.

The following are two examples of relevant economic interactions in which the players’

utilities have this quadratic form.

Example 2.1. Price Competition. Players are oligopolies engaging in price competition

with differentiated products. Each firm i chooses a price ai ∈ Ai = [0,∞). The demand

faced by firm i is given by Qi = x− bai+ ga−i, so profits are Πi = xai− ba2
i + gaia−i, where

where b, g, x > 0. Firms know all parameters except the demand intercept x, which is drawn

from [x, x] ⊂ [0,∞). Firm i’s utility can be written as ui(θ, ai, a−i) = θai − a2
i − λaia−i,

where θ = x
b and λ = −g

b . Note that λ is negative, so actions are strategic complements.

The assumption that λ > −2 holds provided that g < 2b. That is, if i’s demand reacts

more to i’s price than to −i’s price.

Example 2.2. Quantity Competition. Players are oligopolies engaging in quantity

competition with differentiated products. Each firm i chooses a quantity ai ∈ Ai = [0,∞) to

produce. The inverse demand faced by firm i is given by Pi = x−bai−ga−i, its costs are given

by Ci = dai+ea
2
i , so its profits are Πi = (x−d)ai−(b+e)a2

i −gaia−i, where x > d, b+e > 0

1Appendix C provides an analysis for cases with extreme strategic effects (when |λ| ≥ 2).
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and g > 0. Firms know all parameters except the demand intercept x, which is drawn from

[x, x] ⊂ [d,∞). Firm i’s utility can be written as ui(θ, ai, a−i) = θai − a2
i − λaia−i, where

θ = x−d
b+e is the unknown parameter and λ = g

b+e . Note that λ is positive, so actions are

strategic substitutes. The assumption λ < λ holds provided that x− g
2(b+e)x > d(1− g

2(b+e))

i.e. if the range of uncertainty of x is not to big.

Through the paper it will be convenient to parametrize the game by the parameter λ.

Write G(λ) by the game parametrized by λ.

2.2 Information-Selling Schemes

There is a monopolistic information seller who can provide signals about the state θ. In-

formation about θ could lead the players to make better decisions, and they may thus be

willing to pay to observe messages about θ. The seller’s goal is to maximize revenue by

selling messages to the players.

Call the tuple I = (M,π) an information structure, where M := M1 × M2 is a

compact metric space of messages profiles and π : Θ → ∆(M) is a message protocol, so

that the mapping π(·)(E) : Θ → [0, 1] is measurable for each measurable set E ⊆ M . A

selling scheme consists of (I, p1, p2), where pi ≥ 0 is a participation price for player i. All

information structures are costless for the seller. The objective of the seller is to find a

selling scheme that maximizes revenue.

The timing is given as follows: First, the seller chooses and commits to a selling scheme

(I, p1, p2). Second, players observe (I, p1, p2) and simultaneously decide to participate or

not. If player i participates, then i pays pi to the seller. Third, Nature chooses θ ∈ Θ

according to the common prior µ, and messages (m1,m2) ∈M1 ×M2 are drawn according

to the probability measure π(θ). Fourth, if player i decided to participate, the seller privately

sends message mi to player i; this is independent of whether −i participated or not. Lastly,

the players play the simultaneous move game G(λ).

The model implicitly assumes that the individual prices are not contingent on the out-

comes of the messages. This is without loss of generality, i.e. allowing the prices to be

contingent on the messages does not increase the revenue that the seller can get. (See

Discussion 5.1.)

3 The Induced Bayesian Game

Taken together, the common prior µ ∈ ∆(Θ), the information structure I, and the game

G(λ) induce a Bayesian game. This section analyzes behavior in the Bayesian game.
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Fix µ ∈ ∆(Θ) and I. Write Ω := Θ ×M and let B be its Borel sigma algebra. Let

φ ∈ ∆(Ω) be the unique probability measure such that

φ(D × E) =

∫
θ∈D

π(θ)(E) dµ, (1)

for each measurable set D ⊆ Θ and E ⊆ M .2 The measure φ is the prior of states and

messages that I induces. Call P = (Ω,B, φ) the ex-ante probability space induced by

I. Write Mi : Ω→Mi for the projection of Ω onto Mi.

Let ν : Ω × B → [0, 1] be a regular conditional probability given the sigma algebra

generated by Mi. (Since Ω is Polish, some versions exist; see Durrett (2019).) Construct

the belief mapping βi : Mi → ∆(Θ ×M−i) so that βi(mi) = marg Θ×M−i
ν((θ,mi,m−i), ·)

for each (θ,mi,m−i) ∈ Ω.3 Notice that βi is measurable. (See Lemma A.2.) The belief

mapping βi describes what player i believes about the true state θ and message m−i of

the other player, conditional on message mi. Call T = (Mi, βi)i∈I the type structure

induced by I.

The type structure T and the game G(λ) induce a Bayesian game. In the Bayesian

game, a pure strategy for i is a measurable and bounded function σi : Mi → Ai. Note

that the strict concavity of ui and convexity of the set Ai imply that each best response is

single valued. (See Zimper (2006)). Thus, there is no loss of generality in restricting the

analysis to only pure strategy equilibria.

Fix a pure strategy profile σ = (σ1, σ2). The player i’s expected interim utility of

choosing action ai is given by

ui(ai | mi, σ−i) :=

∫
Θ×M−i

ui(θ, ai, σ−i(m−i)) dβ(mi).

The interim expected utility for player i, given a message mi and a strategy profile σ, is

given by

Ui(mi|σ) :=

∫
Θ×M−i

ui(θ, σi(mi), σ−i(m−i)) dβ(mi).

Definition 3.1. A strategy profile (σ∗1, σ
∗
2) is a Bayesian Equilibrium if for each message

mi ∈Mi, σ
∗(mi) ∈ arg maxai∈Ai ui(ai | mi, σ

∗
−i).

The solution concept of Bayesian equilibrium requires that each player i chooses an

optimal action, given her beliefs βi, her message mi and −i’s strategy σ∗−i.

2Notice that the set of measurable rectangles generate the Borel sigma algebra of the product space. Thus,
there is a unique measure φ ∈ ∆(Θ ×M) that satisfies (1). (See Theorem 1.2.4 in Athreya and Lahiri
(2006)).

3The mapping βi may change in terms of the choice of ν. However, these changes would occur only on a set
of probability zero.
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3.1 Hierarchies of Expectations

The paper characterizes Bayesian equilibrium strategies in terms of a geometric sum of the

players’ hierarchies of expectations about the state θ ∈ Θ. These hierarchies of expectations

are defined in the following way. Define the mapping θ
1
i : Mi → R by

θ
1
i (mi) :=

∫
Θ
θ dmarg Θ βi(mi).

Note that the the compactness of Θ implies the integral above is well defined and that

θ
1
i (mi) ∈ [min Θ,max Θ]. Moreover, since βi : Ω→ ∆(Θ×M−i) is measurable, the mapping

θ
1
i is measurable. (See Appendix A.4.) Given that θ

k
i is defined for both i ∈ I, inductively

define the mapping θ
k+1
i : Mi → R by

θ
k+1
i (mi) :=

∫
M−i

θ
k
−i(m−i) dmargM−i

βi(mi).

Note that θ
k+1
i (mi) ∈ [min Θ,max Θ] provided that θ

k
−i(m−i) ∈ [min Θ,max Θ] for each

m−i ∈ M−i. Moreover, since θ
k
−i and βi are measurable, then θ

k+1
i is measurable. (See

Appendix A.4.) Call θ
k
i (mi) player i’s k-order expectation of the state conditional on

message mi. The value θ
1
i (mi) is player i’s conditional expectation of the θ given mi, the

value θ
2
i (mi) is i’s conditional expectation of θ

1
−i(m−i) given mi, and so on for higher-order

expectations.

3.2 Characterization of Bayesian Equilibrium

Theorem 3.1. Fix an information structure I. The Bayesian game induced by (G(λ), µ, I)

has a Bayesian equilibrium (σ∗1, σ
∗
2) where

(i) σ∗i (mi) = 1
2

∑∞
k=1

(−λ
2

)k−1
θ
k
i (mi), and

(ii) Ui(mi | σ∗) = σ∗i (mi)
2.

Moreover, (σ∗1, σ
∗
2) is unique on a set of probability one.

There are a few remarks worth making about this result. First, Theorem 3.1 states that

the Bayesian equilibrium is unique on a set of probability one. Thus, the ex-ante expected

payoff that i gets in each information structure does not depend on equilibrium selection.

This feature is in contrast to many information design models that involve equilibrium

selection. Second, each player’s equilibrium strategy depends on her hierarchies of beliefs.

However, one feature of this model is that the equilibrium can be written in terms hierarchies

of expectations instead of the whole description of the hierarchies of beliefs. Third, the

Bayesian equilibrium depends on the hierarchies of expectations in a geometric way. That

is, all hierarchies of expectations matter, but the impact decreases the higher the order.

Finally, the sign of the effect of each hierarchy depends on whether actions are strategic

substitutes or complements. If actions are strategic complements (λ < 0), the effect of all
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the hierarchies is positive. This implies that both players increase their action as long as

they both “commonly believe” that the state is high. In contrast, if actions are strategic

substitutes (λ > 0), the sign alternates with respect to the parity of the level of the hierarchy.

This implies that player i selects a high action if i expects the state is high and players are

close to “commonly believing” that they “disagree” about their expectations of the state.

3.3 The Value of Information

This section explores the value each agent assigns to each information structure. It computes

the value that i assigns to I depending on the information that both players receive.

Fix an information structure I = (M,π). Let (θ
k
1, θ

k
2)k∈N and (σ∗1, σ

∗
2) be the hierarchies

of expectations and equilibrium strategies associated to I. Let P = (Ω,B, φ) be the proba-

bility space of states and messages that I induces. Write Θ : Ω→ Θ and Mi : Ω→Mi for

the projection of Ω onto Θ and Mi respectively. Write Θ
k
i := θ

k
i ◦Mi and σ∗i := σ∗i ◦Mi for

the random variables that represent the hierarchies of expectations and equilibrium strate-

gies in the space P . Notice that, σ∗i = 1
2

∑∞
k=1(−λ2 )k−1 Θ

k
i . In addition, Θ

1
i = E[Θ | Mi]

and Θ
k+1
i = E[Θ

k
−i | Mi] for each k ∈ N. (See Lemma A.5.) That is, Θ

1
i (resp. Θ

k+1
i )

is a version of the conditional expectation of Θ (resp. Θ
k
−i) conditional on the sigma

algebra generated by Mi. By repeated applications of the law of iterated expectations,

E[Θ
k
i ] = E[Θ], for each i ∈ I and k ∈ N.

Call I = (M,π) silent for player i, if |Mi| = 1, i.e. if agent i always receives the same

message. Notice that when agent i decides not to participate in the selling scheme, players

face a Bayesian game with an information structure that is silent for i.

Given an information structure I = (M,π), define I−i = (M ′, π′) so that M ′i = {∗},
M ′−i = M−i and margM−i

π′(θ) = margM−i
π(θ) for each θ ∈ Θ. That is, I−i is the

information structure that sends m−i to −i, but sends the silent message ∗ to i. Similarly

define I∅ as an information structure that is silent to both players. Given a selling scheme

(I, p1, p2), if both players participate, players play the Bayesian game induced by I. If −i
participates and i does not, they play the Bayesian game induced by I−i, and if no player

participates, they play the Bayesian game induced by I∅.
Fix an information structure I, let σ∗1, σ

∗
2 be the equilibrium strategies, P the probability

space it induces, and Mi the message of i as a random variable on P . Write Ui(I) :=

E[Ui(Mi | σ∗)] for i’s ex-ante expected payoff under equilibrium of the Bayesian game

induced by I. Call Vi(I) := Ui(I)−Ui(I−i) the value that i assigns to I conditional on −i
participating. The value Vi(I) is the maximum payment that player i is willing to pay for

participating conditional on −i participating.

Theorem 3.2. Fix an environment with degree of strategic substitutability λ and an infor-
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mation structure I. Let P be the induced ex-ante probability space and σ∗i , Θ its associated

random variables. Then,

(i) E[σ∗i ] = 1
2+λE[Θ],

(ii) Ui(I) = E[σ∗2i ],

(iii) If I is silent for i, then Ui(I) =
(

1
2+λE[Θ]

)2
, and

(iv) Vi(I) = Var[σ∗i ].

Proof. Fix and information structure I. We show each point separately:

(i) By repeatedly using the law of iterated expectations, for each k ∈ N, E[Θ
k
i ] = E[Θ].

Therefore,

E[σ∗i ] =
∞∑
k=1

(−λ2 )k−1E[Θ
k
i ]

=
∞∑
k=1

(−λ2 )k−1E[Θ]

= 1
2+λE[Θ].

(ii) This statement is a consequence of Theorem 3.1. The result states that the interim

utility Ui(mi | σ∗) = σ∗i (mi)
2. Thus, Ui(I) = E[Ui(Mi | σ∗)] = E[σ∗2i ].

(iii) If I is silent to i, then |Mi| = 1, so σ∗i is a constant random variable. Thus, by (i),

σ∗i is equal to the constant 1
2+λE[Θ]. Then, by (ii), i’s ex-ante expected utility must be

E[σ∗2i ] =
(

1
2+λE[Θ]

)2
.

(iv) Notice that point (i) states that E[σ∗i ] = 1
2+λE[Θ]. Now, since I−i is silent for i,

Ui(I−i) = ( 1
2+λE[Θ])2 (see point (iii)). Thus, Ui(I−i) = E[σ∗i ]

2. In addition point (ii)

implies Ui(I) = E[σ∗2i ]. Therefore,

Vi(I) = Ui(I)− Ui(I−i)

= E[σ∗2i ]− E[σ∗i ]
2

= Var[σ∗i ],

as desired.

Point (i) of Theorem 3.2 states that i’s expected action is independent of the information

structure. Thus, from an ex-ante point of view, the players’ expected actions are invariant

to the information the seller chooses to reveal. This follows by the quadratic nature of the

payoffs which imply that the best responses are linear functions. Point (i) has important

consequences for optimal policy-making in duopoly games. For instance, suppose a regulator

would like to find the information structure that minimizes expected prices or maximizes

10



expected quantity. In this case, Theorem 3.2 states that is not possible to change the

player’s expected actions by way of selecting information that the players receive.

Point (ii) provides an expression for the expected utility that each player i gets in the

Bayesian equilibrium. It states that this value is the expected value of the square of her

strategy.

Point (iii) provides the expected value of of any information structure that silent for

i. It shows that agent i is completely indifferent among all information structures that are

silent to i. In other words, given that i receives no information, i is indifferent about the

information that −i gets. This is a consequence of the quadratic nature of the payoffs.

In these games, the ex-ante expected action of −i is constant (see point (i)). Thus, given

that i receives no information, changes in the information structure for −i only changes the

variance of −i’s action but not is mean. Consequently, changes in the information structure

for −i only change the variance of i’s payoff, but not its mean. Thus, i is indifferent among

changes in the information −i receives.

Point (iv) states that the value that i assigns to I is the variance of i’s associated

equilibrium strategy. This means that i values I to the extent that it “moves” i’s action

“in the right way.” Moreover, since the variance is non-negative, the value that i assigns to

any information structure is non-negative.

Theorem 3.2 characterizes the maximum revenue the seller can get for a fixed information

structure I. The price pi = Var[σ∗i ] is the maximum transfer that player i is willing to pay

to participate in the seller’s scheme. Thus, for each information structure I = (M,π), the

seller’s maximum revenue is given by R(I) := Var[σ∗1] + Var[σ∗2]. Therefore, the seller’s

objective is to find the information structure I that maximizes the sum of the agents’

variance of their strategies.

3.4 Benchmark Information Structures

This subsection computes the seller’s revenue of information in two benchmark information

structures.The first is the information structure that fully reveals the true state θ to both

players. I denote this information structure by I1,2 := (Θ,Θ, π1,2) where each message

set is Θ, and the message mapping satisfies π1,2(θ)(θ1, θ2) = 1 if and only if θ1 = θ2 =

θ. Notice that for the case λ = 0, I1,2 maximizes the seller’s revenue among all type

structures. This follows from the fact that when λ = 0, each player faces an individual

decision problem. Thus, more information is always better and completely revealing the

parameter θ maximizes each player’s expected payoff. (see Blackwell (1953)).

The second benchmark information structure fully reveals the state to only one player,

say player 1, while revealing nothing to player 2. Denote this information structure by

I1 := (Θ, {∗}, π1), where Θ is the message set for player 1, ∗ is a “silent” message for player
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two and π1(θ)(θ1, ∗) = 1 if and only if θ1 = θ. The proposition below provides an expression

for the seller’s revenue in both benchmark cases.

Proposition 3.1. Suppose the players face a game G(λ). Then,

(i) R(I1) = 1
4Var[Θ], and

(ii) R(I1,2) = 2
(2+λ)2

Var[Θ].

Proposition 3.1 provides expressions for the revenue of I1 and I1,2 as a multiple of

Var[Θ]. Notice that the variance Var[Θ] is exogenously given by the common prior µ ∈
∆(Θ), so it is invariant with respect to the information structure that the seller selects.

The more initial uncertainty players have about the state θ, the higher Var[Θ] and the

more valuable both information structures become. Figure 3.1 below illustrates the seller’s

revenue in these two benchmark cases for any degree of strategic substitutability λ ∈ (−2, 2)

when Var[Θ] is normalized to 1.

Figure 3.1 Revenue comparison between I1 and I1,2

There are three important remarks worth making about Figure 3.1. First, the revenue

of I1 is independent of λ. The reason is that, under I1, player 2 chooses σ∗2 =
(

1
2+λE[Θ]

)2

independently of whether 1 decides to participate or not. Thus, λ, the parameter that

governs the relevance of σ∗2 to player 1, has no role in how player 1 values I1.

Second, at λ = 0, there are no strategic effects. Thus, the revenue of selling the informa-

tion to two players is twice the revenue of selling it to just one. This means R(I1,2) = 2R(I1)

and no informational externalities exist.

Third, at any value λ 6= 0 the strategic effects leads R(I1,2) 6= 2R(I1). Consider the

the case of complements (λ < 0). Since players actions complement each other, the value

of good news (a high realization of θ) increases if the other agent also observes good news.

Thus, the value that player 1 assigns to observing θ increases if player 2 also observes θ and

a positive informational externality arises. Now consider the case of strategic substitutes

(λ > 0). Since players’ actions obstruct each other, the value of good news (a high realization

12



of θ) decreases if the other agent also observes good news. Thus, the value that player 1

assigns to observing θ decreases if player 2 also observes θ and a negative informational

externality arises. These effects manifest in the negative slope of R(I1,2) in Figure 2. The

higher the degree of sustitutability λ, the higher negative the externality. In fact, when

λ > 2(
√

2 − 1) ≈ 0.83, the effect of the externality is so strong that the total value of

information is higher when only one agent has access to θ. In other words, for high values

of λ the total value of information gets destroyed if information is given to both players

instead of to only one. Thus, the seller prefers to offer the information to only player 1 and

commits to not sell the information to the other agent. In this way, player 1 accepts to pay

a larger amount for I1 than what both players would pay under I1,2.

4 Characterization of Optimality

This section characterizes the information structures that guarantees the seller’s revenue

maximization. The key is to use Lemma 4.1 below, which decomposes the value of infor-

mation of each player in terms of covariances of the players’ hierarchies of expectations.

Lemma 4.1. Let I be an information structure and P = (Ω,B, φ) be the probability space

I induces. Then,

(i) Cov[Θ
k
i ,Θ] = Cov[Θ

k
i ,Θ

1
i ],

(ii) Cov[Θ
k
i ,Θ

`
−i] = Cov[Θ

k
i ,Θ

`+1
i ]

(iii) Var[σ∗i ] = 1
2Cov[σ∗i ,Θ]− λ

2 Cov[σ∗i ,σ
∗
−i], and

(iv) R(I) = 1
2Cov[Θ,σ∗1 + σ∗2]− λCov[σ∗1,σ

∗
2].

The identities from 4.1 are direct consequence of the law of iterated expectations. Figure

4.1 illustrates identities (i) and (ii) by showing a “zig-zag” pattern in the covariance matrix

of Θ and (Θ
k
i )i∈I,k∈N. The identities state that any two entries that are in the same block

must be equal. This identities state that the hierarchies of expectations (and thus the

equilibrium strategies) cannot be arbitrarily correlated. Identity (iii) uses the first two

identities to decompose the value of information for each agent. Identity (iv) uses (iii) to

decompose the seller’s revenue I into two components.

13



Figure 4.1 Covariance Matrix of Θ and its hierarchies of expectations up to the 4-th order.

The first component is given by 1
2Cov[Θ,σ∗1 + σ∗2] and is called direct component of I.

This first component is driven by how I helps players to correlate their actions with the true

state θ; the players increase their payoff if they select higher actions when the state is high.

The second component is given by −λCov[σ∗1,σ
∗
2] and is called the strategic component

of I. This second component is driven by the correlation that I induces between players’

actions. If actions are strategic complements then the players prefer positive correlation

so they can increase the pie. If actions are strategic substitutes, then the players prefer

negative correlation to avoid obstructing each other.

Different information structures lead different strategies, and thus, different levels of

correlation between the agents’ strategies. For instance, under I1,2, both players choose

higher strategies for higher values of θ, so their actions are positively correlated. With

I1, player 2’s strategy is constant so players’ strategies are uncorrelated so the strategic

component is zero. The key observation to characterize optimal selling schemes is that

the equilibrium conditions imply that if Cov[Θ,σ∗1 + σ∗2] is high then Cov[σ∗1,σ
∗
2] must

be high as well. This implies a trade-off between the first and the second component for

the case λ > 0. On the one hand, the seller wishes to provide more information to the

players in order to increase the players’ direct component. On the other hand, providing

more information leads higher correlation of the players’ strategies, decreasing the strategic

component. The seller may be willing to sacrifice some of the revenue from the direct

component by obfuscating information in a way that decreases the correlation of the agents

strategies. Thus, for high values of λ, the seller may need to tune the information structure

in a way that finds the optimal balance between providing more information about the

state, and inducing opposite actions.
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4.1 A Bound on the Seller’s Revenue

Proposition 4.1. Fix an environment with strategic effects given by the parameter λ. Then,

for each information structure I, R(I) ≤ b(λ)Var[Θ], where

b(λ) :=

 2
(2+λ)2

if λ ≤ 2
3

1
4λ(2−λ) if λ > 2

3 .

Proposition 4.1 provides an upper bound of the seller’s revenue. There are two important

remarks about this bound. First, the bound linearly depends on the initial variance of the

state. That is, the maximum revenue that the seller can obtain depends on the initial level

of uncertainty. The higher uncertainty the more valuable information is for the buyers.

Second, the bound has an “U” shape that reaches its minimum at λ = 1. Figure 4.2

illustrates this bound and compares it with the revenue of I1,2 and I1.

Figure 4.2 Upper-bound of seller’s revenue.

Corollary 4.1. Fix an environment with degree of strategic substitutability λ.

(i) If λ ∈ (−2, 2
3), then I1,2 maximizes the seller’s revenue.

(ii) If λ = 1, then I1 maximizes the seller’s revenue.

Corollary 4.1 is a direct consequence of Proposition 3.1 and Theorem 4.1. With strategic

complements (−2 < λ ≤ 0), both components are maximized by I1,2 so the bound is

achieved by I1,2. With mild substitutability effects (0 ≤ λ ≤ 2
3) the direct component

dominates the strategic component so the bound is also achieved by I1,2. However, with

strong substitutability effects (2
3 < λ < 2) the strategic component is so strong that I1,2

may not maximize revenue. Moreover, if λ = 1 then I1 maximizes revenue among all

information structures.
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4.2 When is the Bound Achievable?

A natural question that arises is whether the upper-bound from Proposition 4.2 is achievable

by noisy information structures in the region λ ∈ (2
3 , 1)

⋃
(1, 2). The following result

provides a characterization of information structures that achieve the upper-bound b for

high values of λ.

Lemma 4.2. Fix an environment with degree of strategic substitutability λ ∈ (2
3 , λ). Then,

maximizing R(I) is equivalent to minimizing Var[σ∗1 +σ∗2− 1
2λΘ]. In addition, the following

statements are equivalent:

(i) R(I) = b(λ)Var[Θ],

(ii) Var[σ∗1 + σ∗2 − 1
2λΘ] = 0, and

(iii) Var[Θ
1
1 + Θ

1
2 − 2−λ

λ Θ] = 0.

The result provides sufficient conditions for optimality in the region λ ∈ (2
3 , λ). Firstly,

it founds a dual problem for the revenue maximization problem. The dual is to minimize

the variance Var[σ∗1 + σ∗2 − 1
2λΘ]. Thus, any information structure such that Var[σ∗1 +

σ∗2− 1
2λΘ] = 0 implies revenue maximization. In addition, the result also provides a simple

condition for optimality in terms of only first-order expectations about Θ. This condition

states that any information structure such that Var[Θ
1
1+Θ

1
2− 2−λ

λ Θ] = 0 maximizes revenue.

It turns out that the existence of such information structure depends on the parameter λ

and the shape of the common prior µ ∈ ∆(Θ). On the one hand for each λ ∈ (2
3 , λ), there is

a prior µ and and information structure I that achieves the upper-bound. (See Proposition

4.2.) On the other hand, there exist some priors µ such that for almost all values λ ∈ (2
3 , λ),

there is no information structure I achieves the upper-bound b. (See Proposition 4.3.)

Proposition 4.2. Fix an environment with degree of strategic substitutability λ ∈ (0, λ).

Then, there exist a set Θ, a prior µ ∈ ∆(Θ), and an information structure I so that

R(I) = b(λ)Var[Θ].

Figure 4.3 Illustration of µ and I from Proposition 4.2
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Proposition 4.2 shows that for each parameter λ, the there exists environments where

the bound on revenue can be achieved. The proof constructs an environment with a state

space Θ = {θl, θm, θh} where θl + 1 = θm = θh− 1 and a prior µ ∈ ∆(Θ) that depends on λ.

In such environment there is a simple information structure I = (M,π) with Mi = {Li, Hi}
that achieves the bound. It sends message Li to each player in case the state is low, sends a

high message Hi to each players in case the state is high and send apposite messages when

the the state is medium (randomizing with equal probability in both possibilities).

Figure 4.3 illustrates how the prior µ changes with respect to λ. Notice that the higher

the parameter λ is, the higher the probability µ assigns to the medium state θm and the

higher the probability of agents receiving opposite messages. This implies that higher λ leads

to 1) lower correlation of the agents’ strategies with θ (decreasing the direct component),

and 2) lower correlation between the agents’ strategies (increasing the strategic component)

Proposition 4.3. Consider an environment with a parameter λ ∈ [2
3 , λ), a state space

Θ = {θl, θh} and common prior µ ∈ ∆(Θ) that assigns uniform probability.

(i) If λ = 2k
k+2 with k ∈ N, then exists I so that R(I) = b(λ)Var[Θ],

(ii) Otherwise, R(I) < b(λ)Var[Θ] for each I.

Proposition 4.3 states that for priors with binary support and uniform probability, is

impossible to achieve the upper bound for essentially all parameters λ ≥ 2
3 . My understand-

ing is that the fact that all the weight of µ is assigned at the extremes creates difficulties

on how the seller can use the information to coordinate the agents’ strategies.

4.3 When Noise is Optimal?

The results so far show that noisy information structures may dominate the benchmark

information structures I1 and I1,2 when λ ∈ (2
3 , 1)

⋃
(1, λ), at least with some priors µ ∈

∆(Θ). The question that my current research is trying to answer is whether there is a

region of values of λ such that noisy information structures dominate irrespectively of the

prior µ ∈ ∆(Θ). The following conjecture illustrates my guess.

Conjecture 4.1. There exists a value λ̂ > 1 so that for each λ ∈ (λ̂, λ) and each prior

µ ∈ ∆(Θ), there is an information structure I such that R(I) > max(R(I1), R(I1,2)).

4.4 Selling Schemes with Public Communication

In this section I analyse the seller’s problem with the assumption that, by exogenous reasons,

the seller has the restriction that she can only communicate publicly with the players.

Call an information structure I public if I = (M,π) with M1 = M2 and Supp (π(θ)) =

{(m1,m2) ∈M1 ×M2 : m1 = m2}.
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Note that given I, the information structure I−i may not be a public information

structure. Thus, in this case the seller cannot provide the information structure I−i in

case i decides not to participate. However, the expression for the value of information from

Theorem 3.2 still holds. To see this, assume that the seller provides I∅ (the information

structure that is silent to both players) in case one player or both decide not to participate.

Theorem 3.2 implies that Ui(I∅) = Ui(I−i) since both information structures are silent

for i. Thus, Ui(I) − Ui(I−i) = Ui(I) − Ui(I∅), so agent i’s value of I conditional on −i
participating is the same as in the previous analysis. Thus, the maximum payment that i

is willing to pay for participating is Var[σ∗i ] and previous results hold in the same way as

before.

Proposition 4.4. Fix an environment with degree of strategic substitutability λ, a common

prior µ ∈ ∆(Θ) and suppose the seller is constrained to use public information structures.

Then, I1,2 maximizes the seller’s revenue.

Proof. Fix a public information structure I = (M,M,π). Note that θ
k
1(m) = θ

k′

2 (m)

for each message m and each k, k′ ∈ N. That is, all the hierarchies of expectations of

both players coincide for each public message m. Then, σi(m) = 1
2+λθ

1
i (m), so Var[σ∗i ] =

1
(2+λ)2

Var[Θi]. In addition, Lemma 4.1 implies Var[Θ
1
i ] = Cov[Θ

1
i ,Θ] for each player i.

Thus,

Var[Θ]−Var[Θ
1
i ] = Var[Θ]− 2Cov[Θ

1
i ,Θ] + Var[Θ

1
i ]

= Var[Θ−Θ
1
i ]

≥ 0,

so Var[Θ
1
i ] ≤ Var[Θ]. Therefore, for each information structure I,

R(I) = Var[σ∗1] + Var[σ∗2]

= 1
(2+λ)2

(
Var[Θ

1
1] + Var[Θ

1
2]
)

≤ 2
(2+λ)2

Var[Θ]

= R(If1,2).

which establishes the result.

Corollary 4.2. If λ > 2(
√

2 − 1), then public information structures do not maximize

revenue. Thus, the seller is better off if she can privately communicate with the buyers.

The Corollary above follows from the fact that I1 dominates I1,2 for high levels of

λ. Since I1,2 is optimal among the public information structures, it follows that public

information structures are not optimal.
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5 Discussion

This paper studies markets for information when two uninformed agents play a quadratic

game. By the strategic effects of the players’ actions, informational externalities arise. In

other words, the value of information not only depends on the information itself but also in

the information that the other buyer has. This paper shows that the informational exter-

nalities have important consequences on how information is spread. The paper shows that

in the case actions are strategic complements information flows easily. A third party seller

would offer information to both parties. In addition, with the help of a mediation, players

themselves would trade information between them. However, in the case that actions are

strategic substitutes, frictions to transmit information appear. With strategic substitutes

trading information between the players becomes impossible. In addition, if strategic effects

are sufficiently strong, a third party seller would opt to obfuscate information by selling in-

formation to only one player or by providing noisy signals. The paper closes with a brief

discussion of different extensions, comparisons with other papers and questions for future

research.

5.1 Selling Schemes with Contingent Prices

The selling schemes discussed in Section 2.2 implicitly assumes that prices cannot be contin-

gent in the signals that the buyers observe. We show that this is without loss of generality.

Consider an environment where the price pi : Mi → R is a function contingent in the

message. Write pi := pi ◦M i for the random variable in the space P that represents i’s

payment. Notice that E[pi] is i’s expected payment for participating in the selling scheme.

By Theorem 3.3 player i would accept to participate in the selling scheme if and only if

Var[σ∗i ] ≥ E[pi]. That is, player i participates if and only if the value of information exceeds

the expected payment. In addition, the seller’s expected revenue from a selling scheme is

E[p1] + E[p2]. Thus, in any selling scheme where agents participate and provide revenue

E[p1] + E[p2], there is a selling scheme with fixes prices pi = E[pi] that achieves the same

revenue for the seller.

5.2 Robustness

This paper shows that obfuscating information with noisy signals may be optimal to maxi-

mize revenue. However, the optimal noisy information structures are highly sensible to the

original prior of the state. Tiny changes in the prior could potentially lead to big losses on

the value of information.

However, there are two information structures that are in certain sense “more robust”

than any noisy information structure. Notice that V (I1) and V (I1,2) depend on the prior
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µ only trough the level of uncertainty Var(Θ). (See Proposition 3.1.)

My guess is that noisy information structures can potentially do much worse than I1,2

and I1. That is, for each information structure I there is a (non degenerated prior) µ ∈
∆(Θ) such that

R(I) ≤ max[R(I1), R(I1,2)] = max{1
4 ,

2
2+λ}Var[Θ].

That is, while a noisy information structure I may be optimal for a prior µ, I may be worse

than I1,2 or I1,2 for some other prior µ′. Therefore, if the information buyers are “unsure”

about the true prior and have min-max preferences they may be willing to pay more for

I1,2 or I1,2 than to any other information structure.

5.3 Other Quadratic Forms

The results of optimal selling schemes can be applied to other environments with a more

general quadratic form. For instance, suppose the unknown parameter is θ̂ payoff function

of agent i is

ûi(ai, a−i, θ̂) = δ0θ̂ai − δ1a
2
i − δ2a1a−i − δ3ai − δ4a−i − f(θ̂), (2)

where δ1 > 0 and certain function f : R → R. This section argues that the selling infor-

mation model with this payoff function is equivalent to a model with the standard form.

This means, is equivalent to analyse the payoff function ûi(ai, a−i, θ) = θai − a2
i − λaia−i,

by taking the transformation θ := δ0θ̂−δ3
δ1

and setting λ = δ2
δ1

.

To show the equivalence, notice that after normalizing this payoff by δ1 leads

ui(ai, a−i, θ) = δ0θ̂−δ3
δ1

ai − a2
i − δ2

δ1
aia−i − δ4

δ1
a−i − f̂(θ)

δ1

= θai − a2
i − λaia−i − δ4

δ1
a−i − f̂(θ)

δ1
,

where f̂(θ) := f(δ1( θδ0 ) + δ3)) = f(θ̂). Notice that players best response of i is independent

of the terms − δ4
δ1
a−i − f̂(θ)

δ1
. Therefore, for any information structure I, the agents’ unique

Bayesian equilibrium is still given by (σ∗1, σ
∗
2) from Theorem 3.1. In addition, note that the

expected payoff that player i gets under an information structure I is

Ui(I) = E[Θσ∗i − σ2
i − λσ∗iσ∗−i − δ4

δ1
σ∗−i − 1

δ1
g(Θ)]

= E[Θσ∗i − σ2
i − λσ∗iσ∗−i]− δ4

δ1
E[σ∗−i]− 1

δ1
E[f̂(Θ)].

However, notice that E[f̂(Θ)] depends only on the prior µ0 but not in the information

structure I. Moreover, the same is true for the term E[σ∗−i]. (See Theorem 3.2.) In other

words Ui(I) = E[Θσ∗i − σ∗2i − λσ∗iσ∗−i] − c for certain constant c ∈ R and the analysis of

the value of information holds in the same way as in Section 3.3.

Example 5.1. This example illustrates a payment function that takes the form (2). In the

spirit of the beauty contest, consider the utility function with quadratic form (Morris and
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Shin (2002))

ui(ai, a−i, θ) = −(1− r)(ai − θ)2 + r(ai − a−i)2,

where r ∈ (0, 1). In this game, agents have incentives to match the action ai with the state

θ and the action of the other player a−i. Notice that expanding this expression leads

ui(ai, a−i, θ) = 2(1− r)aiθ − a2
i + 2raia−i − (1− r)θ2

= δ0aiθ − δ1a
2
i − δ2aia−i − f(θ),

where δ0 = 2(1 − r), δ1 = −1, δ2 = −2r and f(θ) = (1 − r)θ2. This, environment is

equivalent to an to the former model with a the degree of strategic sustitutability λ = −2r.

Therefore, selling information to both agents maximizes revenue. (See Corollary 4.1.)

5.4 Bayes Correlated Equilibrium

The notion of Bayes correlated equilibrium (BCE) is a solution concept that character-

izes all distributions of outcomes that can be generated by a Bayesian equilibrium of any

information structure. This solution concept can be used to compute the seller’s scheme

that maximizes revenue. However, this paper abstracts from it. The reason is that a

characterization of BCE outcomes does not reveal what BCE outcomes are attached to a

particular information structure. For instance, suppose that a researcher would like to have

a prediction of behavior and payoffs for a particular information structure I she has. The

BCE characterization provides a set of outcomes that can be achieved by all information

structures but is silent about what outcomes are realized for a particular I. Instead, this

paper finds characterizes the unique Bayesian equilibrium for each information structure so

a researcher is able to compute the value of information for each agent and each information

structure.
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Appendix A Belief Mappings

Fix an information structure I = (M,π) and let P = (Ω,B, φ) the probability space that I
induces. Let AMi be the sigma algebra generated by Mi. Since Ω is Polish, there exist a

version of regular conditional probability ν : Ω× B → [0, 1] given AMi (see Theorem 5.1.9

Durrett (2019)). Note ν satisfies three properties.
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(i) For each ω ∈ Ω, ν(ω, ·) is a probability measure on (Ω,B).

(ii) For each E ∈ B, ν(·, E) : Ω→ [0, 1] is a AMi measurable.

(iii) For each E ∈ B, F ∈ A ∫
F
ν(E,ω) dφ(ω) = φ(E ∩ F ).

Define ν̂ : Ω → ∆(Ω) so that ν̂(ω)(E) = ν(ω,E) and ν̃ : Ω → ∆(Θ ×M−i) so that

ν̂i(ω) = marg Θ×M−i
ν̃(ω). Fix (θ∗,m∗−i) ∈ Θ × M−i and define gi : Mi → Ω so that

gi(mi) = (θ∗,mi,m
∗
−i). Define the belief mapping βi : Ω → ∆(Θ ×M−i) by βi := ν̃i ◦ gi.

Lemma A.2 below shows that βi is measurable. In addition, Lemma A.3 below shows the

choice of (θ∗,m∗−i) does not change the mapping βi.

Lemma A.1. The mapping ν̂ : Ω→ ∆(Ω) is measurable.

Proof. Since Ω is a compact metric space, the Borel sets in the topology of weak convergence

is generated by sets of the form {µ ∈ ∆(Ω) : µ(E) ≥ p}, for E ∈ B and p ∈ [0, 1]. (See

Gaudard and Hadwin (1989).) Therefore, to show that ν̂ : Ω → ∆(Ω) is measurable,

it suffices to show that {ω ∈ Ω : ν̂(ω)(E) ≥ p} ∈ B for each E ∈ B, p ∈ [0, 1]. (See

Corollary 4.24 in Aliprantis and Border (2006).) Fix E ∈ B and p ∈ [0, 1]. Notice that

ν(·, E) : Ω → [0, 1] is measurable with respect to AMi so is measurable with respect to B
as well. Thus, {ω ∈ Ω : ν(ω,E) ≥ p} ∈ B so {ω ∈ Ω : ν̂(ω)(E) ≥ p} ∈ B as well.

Lemma A.2. The mapping βi : Mi → ∆(Θ×M−i) is measurable.

Proof. Notice that proj Θ×M−i
: Ω→ Θ×M−i is continuous. Then, marg Θ×M−i

: ∆(Ω)→
∆(Θ×M−i) so that marg Θ×M−i

µ is the image measure of µ under proj Θ×M−i
is continuous.

(See Theorem 15.14 in Aliprantis and Border (2006).) Since ν̂i is measurable (see Lemma

A.1), the mapping ν̃i = marg Θ×M−i
◦ ν̂i is measurable. Since gi is also measurable, it follows

that βi = ν̃i ◦ gi is measurable.

Lemma A.3. Fix ω, ω′ ∈ Ω. If projMi
(ω) = projMi

(ω′), then ν̃(ω) = ν̃(ω′)

Proof. Fix ω, ω′ ∈ Ω so that projMi
(ω) = projMi

(ω′). Notice that for each E ∈ B, the

mapping ν(·, E) : Ω → [0, 1] is measurable with respect to AMi . Then, for each E ∈ B,

ν(ω,E) = ν(ω′, E). This implies that ν̂(ω) = ν̂(ω′) and so ν̃(ω) = ν̃(ω′).

A.1 Hierarchies of Expectations

The following lemma implies that all the hierarchies of expectations (θ
k
1, θ

k
2)k∈N are mea-

surable.
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Lemma A.4. Let f : Θ ×M−i → R be a bounded and measurable mapping. Definef :

Mi → R so that

f(mi) =

∫
f dβi(mi).

Then, f is measurable.

Proof. Define f̂ : ∆(Θ×M−i)→ R so that

f̂(µ) =

∫
f dµ.

Since f is bounded and measurable then f̂ is well-defined and measurable. (See Theorem

15.14. in Aliprantis and Border (2006)). Therefore, f = f̂ ◦ βi is measurable. (See Lemma

A.2.)

Let X : Ω→ R an integrable random variable on P and ν the fixed regular conditional

probability that defines βi. The mapping E[X |Mi] : Ω→ R so that

E[X |Mi](ω) :=

∫
X(ω′) ν(ω, dω′),

is a version of the conditional expectation of X given AMi (see Athreya and Lahiri (2006)).

That is,

(i) the mapping E[X |Mi] is AMi-measurable, and

(ii) for each A ∈ AMi ∫
A

E[X |Mi] dφ =

∫
A

X dφ.

Notice that since E[X |Mi] is AMi-measurable, then E[Θ |Mi](ω) = E[Θ |Mi](ω
′) for

each ω, ω′ ∈ Ω so that Mi(ω) = Mi(ω
′). Denote E[Θ | Mi = mi] as E[Θ | Mi](ω) for an

element ω ∈ Ω such that Mi(ω) = mi.

Lemma A.5. Write Θ
k
i := θ

k
i ◦Mi for each k ∈ N. Then,

(i) Θ
1
i = E[Θ |Mi], and

(ii) Θ
k+1
i = E[Θ

k
i |Mi].

Proof. To show (i), fix ω ∈ Ω and write Mi(ω) = mi. Notice that

Θ
1
i (ω) = θ

1
i (mi)

=

∫
θ marg Θ βi(mi)

=

∫
Θ(ω′) ν(ω, dω′)

= E[Θ |Mi](ω),

as desired. The proof of (ii) is analogous.
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Appendix B Omitted Proofs

B.1 Proofs from Section 3

Proof of Theorem 3.1

The proof is divided in four steps. The first shows that each type mi, σ
∗
i (mi) ∈ Ai, the

second shows that (σ∗1, σ
∗
2) is a Bayesian equilibrium, the third shows uniqueness of Bayesian

equilibrium, and the last computes the interim expected utility of each type.

Step 1. Fix mi ∈Mi and write fi(mi) := 1
2

∑∞
k=1

(−λ
2

)k−1
θ
k
i (mi). We show that for each

mi, fi(mi) ∈ Ai.
First consider the first case where Ai = R and λ ∈ (−2, 2). Notice that 0 ≤ θki (mi) ≤

max(Θ) for each k ∈ N and |λ2 | < 1. Thus, fi(mi) is a convergent sum so fi(mi) ∈ Ai.
Now, consider the second case where Ai = R+ and 2 < λ < λ. Note that for each k ∈ N,

0 ≤ min Θ ≤ θ
k
i (mi) ≤ max Θ. If λ < 0, then

fi(mi) = 1
2

∞∑
k=1

(−λ
2

)k−1
θ
k
i (mi) ≥ 0,

since each term in the sum is non-negative. If λ ≥ 0 then

fi(mi) = 1
2

∞∑
k=1

(−λ
2

)k−1
θ
k
i (mi)

= 1
2

∞∑
k∈N

(−λ
2

)2k−2
θ

2k−1
i (mi) + 1

2

∞∑
k∈N

(−λ
2

)2k−1
θ

2k
i (mi)

= 1
2

∞∑
k∈N

(−λ
2

)2k−2
θ

2k−1
i (mi)− λ

4

∞∑
k∈N

(−λ
2

)2k
θ

2k
i (mi)

≥ 1
2

∞∑
k∈N

(−λ
2

)2k−2
min (Θ)− λ

4

∞∑
k∈N

(−λ
2

)2k
max(Θ)

= 1
4−λ2 (2 min(Θ)− λmax(Θ)).

Then, since λ < λ = 2 min Θ
max Θ , it follows that fi(mi) ≥ 0, so fi(mi) ∈ Ai = R+.

Step 2. Now, I show that (σ∗1, σ
∗
2) = (f∗1 , f

∗
2 ) is a Bayesian Equilibrium. We shall show

that

σ∗i (mi) ∈ arg max
ai∈Ai


∫

Θ×M−i

(
ai θ − a2

i − λ ai σ∗−i(m−i)
)
βi(mi)

 .

To prove this, it is enough to show that

σ∗i (mi) = 1
2

∫
θ − λ σ∗−i(m−i) dβi(mi). (3)
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Notice that for each mi ∈Mi,

σ∗i (mi) = 1
2

∞∑
k=1

(−λ
2

)k−1
θ
k
i (mi)

= 1
2

(
θ

1
i (mi) +

∞∑
k=1

(−λ
2

)k
θ
k+1
i (mi)

)

= 1
2

(
θ

1
i (mi)− λ

2

∞∑
k=1

(−λ
2

)k−1
θ
k+1
i (mi)

)

= 1
2

(∫
θ − λ

2

∞∑
k=1

(−λ
2

)k−1
θ
k
−i(m−i) dβi(mi)

)

= 1
2

(∫
θ − λ σ∗−i(m−i) dβi(mi)

)
,

where the fourth equality follows from the definition of θ
1
i (mi) and θ

k+1
i (mi), and the last

equality from definition of σ∗i (mi). Thus, equation (3) is satisfied.

Step 3. Now we compute the interim expected utility of each type mi under σ∗. Note that

ui(mi | σ∗) =

∫
Θ×M−i

ui(θ, σ
∗
i (mi), σ

∗
−i(m−i) dβ(mi)

=

∫
Θ×M−i

σ∗i (mi)(θ − σ∗i (mi)− λ σ∗−i(m−i)) dβ(mi)

= σ∗i (mi)

∫
Θ×M−i

(θ − σ∗i (mi)− λ σ∗−i(m−i)) dβ(mi)

= σ∗i (mi)

[∫
Θ×M−i

(θ − λ σ∗−i(m−i)) dβ(mi)− σ∗i (mi)

]
= σ∗i (mi)

2.

where the fourth equality comes from equation (3).

Step 4. Now, we show that (σ∗1, σ
∗
2) is the unique in a set of probability one. Fix a

Bayesian equilibrium (σ̂1, σ̂2). Consider the probability space P = ((Θ×M),B, φ) induced

by I. Write σ̂∗i := σ̂∗i ◦Mi and recall that σ∗i := σ∗i ◦Mi. To show that the Bayesian

equilibrium is unique in a set of probability one, we show that E[|σ∗i − σ̂i|] = 0. Note that

(3) implies that σ∗i (mi) = E[1
2Θ− λ

2σ
∗
−i |Mi = mi]. Notice,

σ̂i(mi) ∈ arg max
ai∈Ai


∫

Θ×M−i

(
ai θ − a2

i − λ ai σ̂−i(m−i)
)
βi(mi)

 .

By the first order conditions, σ̂i(mi) = E[1
2Θ − λ

2 σ̂−i | Mi = mi] if Ai = R. Similarly,
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σ̂i(mi) = max[E[1
2Θ− λ

2 σ̂−i |Mi = mi], 0] if Ai = [0,∞). Thus, in either case,

|σ∗i (mi)− σ̂i(mi)| ≤
∣∣E[1

2Θ− λ
2σ
∗
i |Mi = mi]− E[1

2Θ− λ
2 σ̂i |Mi = mi]

∣∣
=
∣∣E[λ2σ

∗
i − λ

2 σ̂i |Mi = mi]
∣∣

≤
∣∣λ

2

∣∣E[|σ∗i − σ̂i| |Mi = mi]. (4)

Consequently,

E [|σ∗i − σ̂i|] ≤
∣∣λ

2

∣∣ E
[
E
[∣∣σ∗−i − σ̂−i∣∣ |Mi = mi

]]
=
∣∣λ

2

∣∣E [∣∣σ∗−i − σ̂−i∣∣] .
So E [|σ∗i − σ̂i|] ≤

(
λ
2

)2 E [|σ∗i − σ̂i|] . Since |λ| < 2, it follows that E [|σ∗i − σ̂i|] = 0.

Therefore, the Bayesian equilibrium is unique in a set of probability one.

Proof of Proposition 3.1

First, consider the type structure I1. Since player 1 observes the true state and player 2

does not observe any signal, then Θ
1
1 = Θ , Θ

1
2 = E[Θ]. In addition, since both know

that player 2 do not observes any signal, Θ
k
i = E[Θ] for each k ∈ N, k ≥ 2, i ∈ I. Write

c = 1
2+λVar[Θ] and notice that

(i) σ∗1 = 1
2

∑
k∈N

(−λ
2

)k−1
Θ
k
1 = 1

2Θ− c
6 , and

(ii) σ∗2 = 1
2

∑
k∈N

(−λ
2

)k−1
Θ
k
2 = c.

Therefore, Var[σ∗1] + Var[σ∗2] = Var[Θ
2 −

c
6 ] + Var[ c3 ] = 1

4Var[Θ].

Now, consider type structure I1,2. In this case, Θ
k
i = Θ for each i ∈ I, k ∈ N. Thus,

for each player i ∈ I.

σ∗i = 1
2

∑
k∈N

(−λ
2

)k
Θ = 1

2+λΘ.

Therefore, Var[σ∗1] + Var[σ∗2] = 2Var[ 1
2+λΘ] = 2

(2+λ)2
Var[Θ].

B.2 Proofs from Section 4

Lemma B.1. Fix a probability space P and let X be a real integrable random variable and

Z1 and Z2 two other random variables. Let X
1
i be a version of E[X | Zi] and for each k ∈ N,

let X
k+1
i be a version of E[X

k
−i | Zi]. Then, for each k, ` ∈ N,

(i) Cov[X
k
i ,X] = Cov[X

k
i ,X

1
i ], and

(ii) Cov[X
k
i ,X

`
−i] = Cov[X

k
i ,X

`+1
i ].

Proof. First we show (i). Note that random variable X
k
i is measurable with respect to the

sigma algebra generated by Zi. Then, E[X
k
i X | Zi] = X

k
i E[X | Zi] with probability one.
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(See Theorem 34.3 in Billingsley (2008).) Thus,

E
[
X
k
iX
]

= E
[
E[X

k
iX] | Zi]

]
= E

[
X
k
i E[X | Zi]

]
= E[X

k
iX

1
i ],

where the first equality comes from the law of iterative expectations, and the last equality

is given by the definition of X
1
i .

Now, by the law of iterated expectations E[X
1
i ] = E[X]. Thus,

Cov[X
k
i ,X] = E[X

k
iX]− E[X

k
i ]E[X]

= E[X
k
iX

1
i ]− E[X

k
i ]E[X

1
i ]

= Cov[X
k
i ,X

1
i ],

as desired. The proof of (ii) analogous to the proof of (i) by replacing X with X
`
−i.

Proof of Lemma 4.1

Identities (i) and (ii) follow from Lemma B.1.

To show (iii) By using the linearity of the covariance, the first identity implies that

Cov[σ∗i ,Θ] = 1
2

∞∑
k∈N

(−λ
2

)k−1
Cov

[
Θ
k
i ,Θ

]
= 1

2

∞∑
k∈N

(−λ
2

)k−1
Cov

[
Θ
k
i ,Θ

1
i

]
= Cov[σ∗i ,Θ

1
i ].

Analogously, for each k ∈ N identity 2 implies Cov[σ∗i ,Θ
k
−i] = Cov[σ∗i ,Θ

k+1
i ]. Therefore,

2 Var[σ∗i ] = 2 Cov[σ∗i ,σ
∗
i ]

= 2
∑
k∈N

(−λ
2

)k−1
Cov[σ∗i ,Θ

k
i ]

= Cov[σ∗i ,Θ
1
i ]− λ

2

∑
k∈N

(−λ
2

)k−1
Cov[σ∗i ,Θ

k+1
i ]

= Cov[σ∗i ,Θ]− λ
2

∑
k∈N

(−λ
2

)k−1
Cov[σ∗i ,Θ

k
−i]

= Cov[σ∗i ,Θ]− λCov[σ∗i ,σ
∗
−i],

as desired.

Finally, identity (iv) follows from identity 3 and the definition of R(I).

Lemma B.2. Fix an information structure I. Then

(i) R(I) = 1
4λ(2−λ)Var[Θ]− λ

2−λVar
[
σ∗1 + σ∗2 − 1

2λΘ
]
, for each λ 6= 0, and
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(ii) R(I) = 2
(2+λ)2

Var[Θ]−2−3λ
2+λ Var

[
σ∗1 − Θ

2+λ

]
−2−3λ

2+λ Var
[
σ∗2 − Θ

2+λ

]
− 2 λ

2+λVar
[
σ∗1 + σ∗2 − 2Θ

2+λ

]
.

Proof. First we show (i). Fix λ 6= 0. By Lemma 4.1, R(I) = 1
2Cov[Θ,σ∗1 + σ∗2] −

λCov[σ∗1,σ
∗
2]. This implies

2 Cov[σ∗1,σ
∗
2] = 1

λCov[σ∗1,Θ] + 1
λCov[σ∗2,Θ]− 2

λR(I). (5)

Then,

Var
[
σ∗

1 + σ∗
2 − 1

2λΘ
]

= 1
4λ2 Var[Θ] + Var[σ∗

1] + Var[σ∗
2] + 2 Cov[σ∗

1,σ
∗
2]− 1

λCov[σ∗
1,Θ]− 1

λCov[σ∗
2,Θ]

= 1
4λ2 Var[Θ] +R(I) + 2 Cov[σ∗

1,σ
∗
2]− 1

λCov[σ∗
1,Θ]− 1

λCov[σ∗
2,Θ]

= 1
4λ2 Var[Θ] +R(I)− 2

λR(I)

= 1
4λ2 Var[Θ] + λ−2

λ R(I),

where the third equality follows from (5). Rearranging this equation shows (i), as desired.

Now we show (ii). Write C1 := 2−3λ
2+λ Var

[
σ∗1 − Θ

2+λ

]
, C2 := 2−3λ

2+λ Var
[
σ∗2 − Θ

2+λ

]
, and

C3 := 2 λ
2+λVar

[
σ∗1 + σ∗2 − 2Θ

2+λ

]
. First notice that

C1 =2−3λ
2+λ Var

[
σ∗1 − Θ

2+λ

]
=2−3λ

2+λ

(
Var[σ∗1] + 1

(2+λ)2
Var[Θ]− 2

(2+λ)Cov[σ∗1,Θ]
)

=2−3λ
2+λ Var[σ∗1] + 2−3λ

(2+λ)3
Var[Θ]− 4−6λ

(2+λ)2
Cov[σ∗1,Θ].

Analogously, C2 = 2−3λ
2+λ Var[σ∗2] + 2−3λ

(2+λ)3
Var[Θ]− 4−6λ

(2+λ)2
Cov[σ∗2,Θ]. Therefore,

C1 + C2 =2−3λ
2+λ R(I) + 4−6λ

(2+λ)3
Var[Θ]− 4−6λ

(2+λ)2
Cov[σ∗1 + σ∗2,Θ]

Now, notice that

Var
[
σ∗

1 + σ∗
2 − 2Θ

2+λ

]
= Var[σ∗

1 + σ∗
2] + 4

(2+λ)2 Var[Θ]− 4
2+λCov[σ∗

1 + σ∗
2,Θ]

= Var[σ∗
1] + Var[σ∗

2] + 2Cov[σ∗
1,σ

∗
2] + 4

(2+λ)2 Var[Θ]− 4
2+λCov[σ∗

1 + σ∗
2,Θ]

= R(I) + 2Cov[σ∗
1,σ

∗
2] + 4

(2+λ)2 Var[Θ]− 4
2+λCov[σ∗

1 + σ∗
2,Θ].
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This implies

C3 = 2λ
2+λVar

[
σ∗1 + σ∗2 − 2Θ

2+λ

]
= 2λ

2+λR(I) + 4λ
2+λCov[σ∗1,σ

∗
2] + 8λ

(2+λ)3
Var[Θ]− 8λ

(2+λ)2
Cov[σ∗1 + σ∗2,Θ]

= 2λ
2+λR(I) + 2

2+λ

(
Cov[σ∗1 + σ∗2,Θ]− 2R(I)

)
+ 8λ

(2+λ)3
Var[Θ]− 8λ

(2+λ)2
Cov[σ∗1 + σ∗2,Θ]

=
(

2λ
2+λ −

4
2+λ

)
R(I) + 8λ

(2+λ)3
Var[Θ] +

(
2

2+λ −
8λ

(2+λ)2

)
Cov[σ∗1 + σ∗2,Θ]

=2λ−4
2+λ R(I) + 8λ

(2+λ)3
Var[Θ] + 4−6λ

(2+λ)2
Cov[σ∗1 + σ∗2,Θ],

where the third equality follows from (5). Therefore,

C1 + C2 + C3 =
(

2−3λ
2+λ + 2λ−4

2+λ

)
R(I) +

(
8λ

(2+λ)3
+ 4−6λ

(2+λ)3

)
Var[Θ]

=
(
−2−λ
2+λ

)
R(I) + 2λ+4

(2+λ)3
Var[Θ]

= −R(I) + 2
(2+λ)2

Var[Θ],

rearranging this equation shows (ii).

Proof of Proposition 4.1

Fix an information structure I. First consider the case λ ∈ (2
3 , 2). By Lemma B.2,

R(I) = 1
4λ(2−λ)Var[Θ]− λ

2−λVar
[
σ∗1 + σ∗2 − 1

2λΘ
]

≤ 1
4λ(2−λ)Var[Θ]

= b(λ)Var[Θ].

Now, consider the case λ ∈ (−2, 2
3). By Lemma B.2,

R(I) = 2
(2+λ)2 Var[Θ]− 2−3λ

2+λ Var
[
σ∗

1 − Θ
2+λ

]
− 2−3λ

2+λ Var
[
σ∗

2 − Θ
2+λ

]
− 2 λ

2+λVar
[
σ∗

1 + σ∗
2 − 2Θ

2+λ

]
≤ 2

(2+λ)2 Var[Θ]

= b(λ)Var[Θ],

where the inequality follows from the the fact that λ ≤ 2
3 implies 2−3λ

2+λ ≥ 0.

Lemma B.3. Fix a type structure I and degree of substitutability λ 6= 0. Then

1
2W = (2− λ)U + λ (E[U |M1] + E[U |M2])

where W := Θ
1
1 + Θ

1
2 − 2−λ

λ Θ, and U := σ∗1 + σ∗2 − 1
2λΘ.
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Proof. First Notice that

λ E[U |Mi] = λ E[σ∗i + σ∗−i − 1
2λΘ |Mi]

= λσ∗i + E[λσ∗−i − 1
2Θ |Mi]

= λσ∗i + E

[
λ
∞∑
k=1

(−λ
2

)k−1
Θ
k
−i − 1

2Θ |Mi

]

= λσ∗i + λ
∞∑
k=1

(−λ
2

)k−1
Θ
k+1
i − 1

2Θ
1
i

= λσ∗i − 2
∞∑
k=1

(−λ
2

)k−1
Θ
k
i + 1

2Θ
1
i

= λσ∗i − 2σ∗i + 1
2 Θ

1
i

= (λ− 2)σ∗i + 1
2 Θ

1
i .

Therefore,

(2− λ)U + λ (E[U |M1] + E[U |M2]) = (2− λ)(σ∗
1 + σ∗

2 − 1
2λΘ) + (λ− 2)(σ∗

1 + σ∗
2) + 1

2 (Θ
1

1 + Θ
1

2)

= 1
2 (Θ

1

1 + Θ
1

2)− 2−λ
2λ Θ

= 1
2W,

so the desired equality holds.

Lemma B.4. Let X and Y be two random variables on (Ω,B, µ) and assume X has finite

second moments. Then, Cov[X,E[X | Y]] ≥ 0.

Proof. Notice that Cov[X,E[X | Y]] = Cov[E[X | Y],E[X | Y]]. (See Lemma B.1.) Thus

Cov[X,E[X | Y]] = Var[E[X | Y]] ≥ 0.

Proof of Lemma 4.2

Write W := Θ
1
1 + Θ

1
2 − 2−λ

λ Θ, and U := σ∗1 +σ∗2 − 1
2λΘ. Note that Lemma B.2 states

R(I) = 1
4λ(2−λ)Var[Θ]− λ

2−λVar [U] .

Since Var[Θ] is exogenous, maximizing R(I) is equivalent to minimizing Var[U]. In addi-

tion, R(I) = b(λ)Var[Θ] if and only if Var[U] = 0 so (i) is equivalent to (ii).

We show that (ii) is equivalent to (iii) by showing Var[U] = 0 if and only if Var[W] = 0.

To show this, notice that Lemma B.3 states

1
2W = (2− λ)U + λ (E[U |M1] + E[U |M2]) (6)
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Suppose that Var[U] = 0. This implies that U is almost surely constant and so do

E[U |Mi]. Then, Var[W] = 0 by (6).

Now, suppose Var[W] = 0. Notice that (6) implies

0 = 1
4Var[W]

= Var[(2− λ)U + λ (E[U |M1] + E[U |M2])]

= (2− λ)2 Var[U] + λ2 Var[E[U |M1] + E[U |M2]] + 2λ(2− λ) Cov[U,E[U |M1] + E[U |M2]]

≥ (2− λ)2 Var[U],

where the last equality follows from Cov[U,E[U |Mi] ≥ 0. (See Lemma B.4.)

Proof of Proposition 4.2

First suppose λ ∈ (−2, 2
3). If λ ≤ 2

3 , then R(I1,2) = b(λ)Var[Θ] for any prior µ.

Now suppose λ ∈ (2
3 , λ). Let Θ = {θL, θM , θH} ⊂ R be the set of states so that

θL + 1 = θM = θH − 1. Define µ ∈ ∆(Θ) so that µ(θM ) = 1
2 −

1−λ
λ and µ(θL) = µ(θH) =

1
4 + 1−λ

2λ . Write I = (M1,M2, π) where Mi = {Li, Hi} and π : Θ → ∆(M1 ×M2) so that

π(θH)(H1, H2) = 1, π(θH)(H1, L2) = 1
2 , π(θH)(L1, H2) = 1

2 , and π(θH)(L1, L2) = 1.

Notice that βi : Mi → ∆({θL, θm, θh}) is given by βi(Li) = (2−λ
2λ , 1 −

2−λ
2λ , 0), and

βi(Hi) = (0, 1− 2−λ
2λ ,

2−λ
2λ ). Consequently,

θ
1
i (mi) =

θm − 2−λ
2λ if mi = Li

θm + 2−λ
2λ if mi = Hi,

This implies that for each ω ∈ Ω, Θ
1
1(ω) + Θ

1
2(ω) − 2−λ

λ Θ(ω) = 3λ−2
λ θm. Thus, if follows

that Var[Θ
1
1 + Θ

1
2 − 2−λ

λ Θ] = 0 and I reaches the upper bound R(I) = b(λ)Var[Θ] (see

Proposition 4.2).

Lemma B.5. Let X be a Bernoulli random variable in {−1, 1} with uniform probability

and M1, M2 two random variables. Fix α ∈ (0, 2) so that α 6= 2
k for each k ∈ N. Then,

Var [E[X |M1] + E[X |M2]− αX] > 0.

Proof. We proceed by contradiction. Suppose Var(E[X | M1] + E[X | M2] − αX) > 0.

Then E[X | M1] + E[X | M2] − αX = c for certain c ∈ R with probability one. Notice

that E[X] = 0, so by the law of iterated expectations E[E[X |Mi]] = 0. Thus, 0 = E[E[X |
M1]] + E[E[X |M2]]− αE[X] = c. Therefore, c = 0 and

E[X |M1] + E[X |M2]− αX = 0 (7)

We show that (7) implies that Supp [E[X | Mi]] = Supp [E[X | M−i]] = ∅ leading to a

contraction.

To show this, first note the following remarks:
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(i) Supp [E[X |Mi]] ⊆ [−1, 1].

(ii) If x ∈ Supp [E[X |Mi]] with x 6= 1 then (x,−α−x) ∈ Supp [(E[X |Mi],E[X |M−i])].

(iii) If x ∈ Supp [E[X |Mi]] with x 6= −1 then (x, α−x) ∈ Supp [(E[X |Mi],E[X |M−i])].

Notice that (i) follows from the fact that X takes only values in {−1, 1}. To show (ii),

notice that x ∈ Supp [E[X | Mi]] with x 6= 1 implies (x,−1) ∈ Supp [E[X | Mi],X], since

E[X |M i] < 1 only if X = −1 with positive probability. Thus, by (7)

(x,−α− x,−1) ∈ Supp [(E[X |Mi],E[X |M−i],X)]. Remark (iii) is analogous to (ii).

We use (i), (ii), and (iii) to show the following claim.

Claim. For each k ∈ N and each i,

(a) (1− kα, 1− (k − 1)α) ∩ Supp [E[X |Mi]] = ∅, and

(b) (−1 + (k − 1)α,−1 + kα) ∩ Supp [E[X |Mi]] = ∅.

We show the claim by induction in k. First consider the base case k = 1. Suppose that

x ∈ (1−α, 1)∩Supp [E[X |Mi]]. Then, by (ii), −α−x ∈ Supp [E[X |M−i]]. However, notice

that −α−x < α−(1−α) = −1 which contradicts (i). Thus, (1−α, 1)∩Supp [E[X |Mi]] = ∅,
so (a) holds. Analogously, (iii) implies (−1,−1 + α) ∩ Supp [E[X |Mi]] = ∅ so (b) holds.

Now, we show the inductive step. Suppose the claim holds for k ∈ N and suppose

x ∈ (1 − (k + 1)α, 1 − kα) ∩ Supp [E[X | Mi]]. Then, by (ii), −α − x ∈ Supp [E[X | Mi]].

However, −α − x ∈ (−1 + (k − 1)α,−1 + kα) which contradicts (b). Thus (1 − (k +

1)α, 1 − kα) ∩ Supp [E[X | Mi]] = ∅, so (a) holds for k + 1. Analogously, (iii) implies

(−1 +kα,−1 + (k+ 1)α)∩Supp [E[X |Mi]] = ∅, so (b) holds for k+ 1. Therefore, the claim

holds as desired.

Figure B.1 Illustration of Claim with α 6= 2
k for each k ∈ N.

Finally, notice that if α = 2
k for k ∈ N, then the claim implies that Supp [E[X |Mi]] ⊆

{−1,−1 + α, ..., 1 − α, 1}. However, if α 6= 2
k for each k ∈ N then the claim implies that

Supp [E[X |Mi]] = ∅ for each i ∈ I.
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Proof of Proposition 4.3

First we show (i). Suppose for certain k ∈ N, λ = 2k
2+k . By Theorem 4.2, it is enough to

find an information structure such that Var[Θ1 + Θ2 − 2
kΘ] = 0. Define I(k) as follows.

Write M1 = M2 = {0, 1, 2, ..., k} and π : Θ→ ∆(M1 ×M2), so that

π(θl)(m1,m2) =

 1
2k−1

(
k−1
m1

)
if m1 +m2 = k − 1

0 otherwise

and

π(θh)(m1,m2) =

 1
2k−1

(
k−1
m1−1

)
if m1 +m2 = k + 1

0 otherwise

Notice that P[Θ = θh | Mi = 0] = 0 since in state θh the message 0 is never sent.

Similarly, P[Θ = θh |Mi = k] = 1 since message k is sent only in state θh. In addition, for

each i ∈ I and each 1 ≤ mi ≤ k − 1,

P[Θ = θh |Mi = mi] =
P[Θ = θh,Mi = mi]

P[Θ = θl,Mi = mi] + P[Θ = θh,Mi = mi]

=
1
2k

(
k−1
mi−1

)
1
2k

(
k−1
mi

)
+ 1

2k

(
k−1
mi−1

)
=

( k−1
mi−1)

( k
mi

)

=
mi

k
,

where the third equality follows from Pascal’s triangle identity. This implies that θ
1
i (mi) =(

k−mi
k

)
θl +

(
mi
k

)
θh. Therefore,

θ1(m1) + θ2(m2) =
(

2k−m1−m2
k

)
θl +

(
m1+m2

k

)
θh.

Thus, if m1 +m2 = k−1, then θ1(m1)+θ2(m2) = k+1
k θl+

k−1
k θh. In addition, if m1 +m2 =

k + 1, then θ1(m1) + θ2(m2) = k−1
k θl + k+1

k θh. Thus, Θ1 + Θ2 = k−1
k (θl + θh) + 2

kΘ.

Therefore, Var[Θ1 + Θ2 − 2
kΘ] = 0.

Now, we show (ii). Fix an information structure I and write Θ = c1X + c2 for certain

uniform Bernoulli random variable X that takes values {−1, 1}. Notice that

Var[Θ1 + Θ2 − αΘ] = c2
1 Var [E[X |M1] + E[X |M2]− αX] > 0

where the inequality follows from Lemma B.5. Thus, by Proposition 4.2 it follows that

R(I) < b(λ)Var[Θ].
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Appendix C Extreme Strategic Effects

This section provides an analysis for extreme values of λ. Here we show that It shows

that if λ ≤ −2 there may not exist a Bayesian equilibrium. In addition, if λ ≥ 2 then the

seller may achieve unlimited revenue by coordinating the players’ actions without revealing

information about the state θ.

C.1 Extreme Strategic Complementarity

Consider an environment with high strategic complementarity where λ ≤ 2. In this case

the seller is not able to get revenue by selling information information to the buyers. The

condition implies that the slope of the best response in terms of the action of the co-player

is higher than one.

Proposition C.1. Fix an information structure I and assume λ ≤ −2 and Ai = [0,∞).

There exist no Bayesian equilibrium.

Proof. We proceed by contradiction. Assume (σ∗1, σ
∗
2) is a Bayesian equilibrium. Thus,

σ̂i(mi) ∈ arg max
ai∈Ai


∫

Θ×M−i

(
ai θ − a2

i − λ ai σ̂−i(m−i)
)
βi(mi)

 .

Then, by first order conditions, σ∗1(mi) ≥ 1
2E[Θ− λσ∗2 | mi]. Since −λ2 ≥ 1, this implies

E[σ∗i ] ≥ 1
2E[Θ] + E[σ∗−i].

Since Θ ⊂ [0,∞) and µ ∈ ∆(Θ) is assumed to be non degenerated, E[Θ] > 0. Therefore,

E[σ∗i ] > E[σ∗−i] for both i ∈ {1, 2} which leads a contradiction.

C.2 Extreme Strategic Sustitutability

Consider now the case where λ ≥ 2. In this case the seller can help the agents to achieve

high levels of revenue by coordinating their actions instead of given any information about

θ. Moreover, if the set of actions is Ai = R, the level of revenue that the seller could achieve

is unlimited.

Call an information structure I = (M,π) not informative about the state if the

mapping π : Θ→ ∆(M) is constant in Θ. An information structure that is not informative

about the state may still have value for the agents by coordinating actions between them.

Proposition C.2. Assume λ ≥ 2 and Ai = R. Then for each r > 0 there is a information

structure I that is not informative about the state and a Bayesian equilibrium such that the

agents’ ex-ante expected utility is at least r.
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Proof. Define I = (M,π) so that Mi = {Li, Hi} and π(θ)(L1, H2) = 2
2+λ , π(θ)(H1, L2) =

2
2+λ , and π(θ)(L1, L2) = λ−2

2+λ for each θ ∈ Θ. The information structure I induces

a belief mapping βi : Mi → ∆(Θ,M−i) so that marg Θβi(Li) = marg Θβi(Hi) = µ,

marg {L−i,H−i}βi(Hi) = (1, 0), and marg {L−i,H−i}βi(Li) = (λ−2
λ , 2

λ).

Notice that π is constant in θ so it reveals no information about θ. We show that the

induced Bayesian game has multiple equilibria parametrized by a constant c > 0. Define

σ∗i : Mi → R so that σ∗i (Hi) = c and σ∗i (Li) = 1
2E[Θ]− λ

2 c. We show that σ∗i constitutes a

Bayesian equilibrium. To show this, notice that

σ∗i (Hi) = 1
2E[Θ]− λ

2

[
λ−2
λ σ∗−i(H−i) + 2

λσ
∗
−i(L−i)

]
, and

σ∗i (Li) = 1
2E[Θ]− λ

2

[
σ∗−i(H−i)

]
,

which implies that for each mi ∈Mi,

σ∗i (mi) =

∫
Θ×Mi

1
2θ −

λ
2 σ̂−i(m−i) dβi(mi).

Consequently,

σ∗i (mi) ∈ arg max
ai∈Ai


∫

Θ×M−i

(
ai θ − a2

i − λ ai σ̂−i(m−i)
)
dβi(mi)

 ,

so (σ∗1, σ
∗
2) is a Bayesian equilibrium. In addition, Ui(mi | σ∗) = σ∗i (mi)

2. Thus, for each

r > 0 there is c > 0 so that σ∗i (mi)
2 > r for each message mi. Thus, there exists a value

c > 0 so that i’s ex-ante utility is higher than r > 0.
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