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Abstract

This paper studies monopolistic information selling in environments in which (1) the seller

has limited commitment power, and (2) the buyer and the seller hold different beliefs about the

state of the world. We show that in environments with a common prior, there is no advantage

to selling information sequentially; the seller cannot achieve higher revenue than by offering an

experiment that fully reveals the state in one period. We find that if, on the other hand, the

agents agree to disagree about their prior beliefs, the seller achieves a strictly higher revenue

by gradually selling information over multiple periods. Moreover, increasing the number of

periods of the protocol strictly increases the seller’s expected revenue. In addition, in some

environments, it is optimal for the seller to first offer a free sample test, i.e., an experiment that

partially reveals information, at no charge.
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1 Introduction

Information buyers and sellers do not always agree on the value of advice. Individuals often under-

value recommendations provided by professionals such as lawyers, physicians, dietitians, technicians,

and financial advisors. As a result, these professionals frequently employ strategies that encourage

buyers to reassess the value of their advice. A common tactic is the provision of “complimentary

consultations” which tends, on average, to increase the buyers’ willingness to pay for additional in-

formation. Essentially, complimentary consultations serve as “hooks,” persuading buyers to accept

higher fees they might not have initially considered.

This paper sheds light on this practice. We study monopolistic information markets in which

(1) the seller has limited commitment, and (2) the seller and the buyer hold different prior beliefs

regarding the state of the world. Differences in prior beliefs are often derived from differences in

information. We depart from models with private information, focusing on settings in which the

common prior assumption is dropped, and agents agree to disagree about their beliefs regarding the

state of the world. Prior disagreement, for instance, may stem from overconfidence (Grubb, 2009),

differences in opinions (Che and Kartik, 2009), or simply from different views of the world (Alonso

and Câmara, 2016).

We introduce a general monopolistic framework in which an information seller interacts with an

information buyer. The buyer faces a decision problem and hence is willing to pay for experiments

that reveal information about the state of the world. Before the buyer selects an action in the

decision problem, the seller sequentially offers Blackwell experiments to the buyer. The seller can

implement experiments without incurring any cost but has limited commitment: at each period, the

seller commits to honor the experiment she offers, but cannot further commit to transfers or offers

after the signal of the experiment is realized.

To illustrate our main insight, we introduce a two-period example in which the seller and the

buyer disagree in their prior beliefs. Consider a manager (the information buyer) who is overconfident

in the security of her firm’s data, believing the data is well-protected with high probability.1 A

technician (the information seller) has more cautious beliefs, and can offer tests that reveal whether

the data is vulnerable or not. The agents’ beliefs are transparent to them. Disagreement in prior

beliefs leads to a disagreement in how the agents value information. The buyer, confident in the

data’s security, has minimal interest in purchasing information. The seller disagrees, appreciating

how the information could mitigate costly errors for the buyer. The seller cannot prove the value of

her information through one-period selling protocols, hence obtaining low revenue from disclosing it.

Two-period selling schemes, however, can boost revenue. Consider, for instance, the following two-

period scheme. In the first period, the seller offers a free sample test that partially reveals the state

of the world at no charge. In the second period, the seller offers a fully revealing test by charging

a high fee. We show that the seller strictly benefits from using the free sample as it, on average,

reduces the buyer’s confidence that the data is safe, thereby enhancing the buyer’s perceived value

of further information. Moreover, we show that offering an initial free sample test plus a subsequent

fully-revealing test at a high price is the unique optimal two-period selling strategy.

1By overconfident we mean prior disagreement in the sense of Grubb (2009).



Our main result characterizes the agents’ equilibrium payoffs for (1) any decision problem that

the buyer faces, (2) any prior beliefs of the agents, and (3) any number of periods that the agents

are allowed to trade. If the agents share a common prior, then there is no advantage in selling

information sequentially. The seller gets the same expected revenue by either selling all information

in one period or by slowly selling information over multiple periods. Under prior disagreement,

however, selling all information in one period is strictly suboptimal. Intuitively, selling information

gradually allows the seller to tailor an experiment that drives the buyer’s posterior belief towards

paths where the seller expects higher future payments. The drift induced by prior disagreement

creates a non-trivial trade-off between maximizing present and future revenue. Our key insight is

that, at each history before the last period, the trade-off is optimized by selling some information,

but not all. Moreover, by using standard arguments of ultimatum-style games, we show that this is

the only behavior consistent with subgame perfect equilibrium.

Our second main result characterizes the marginal revenue of time. While the seller strictly

benefits from having extra periods of trade, we show that the marginal value of an extra period

sharply decreases over time. Moreover, the seller’s total revenue is bounded regardless of the number

of periods of the interaction. So, even if the seller has an arbitrarily large number of periods to trade,

the seller’s revenue remains bounded. While a sequential interaction allows the seller to steer the

buyer’s beliefs toward high-revenue paths, the seller ends up selling most of the ‘stock’ of information

at early periods, making long-run periods almost irrelevant.

Related Literature The common prior assumption has long played a prominent role in economic

theory. (See Harsanyi (1968); Aumann (1976); Halpern (2002).) Nevertheless, models without a

common prior are fully consistent with rationality, especially if beliefs are interpreted through a

“personalistic” or “subjectivist” Bayesian lens. (See Savage (1972); Morris (1995).) Our paper

demonstrates that dropping the common prior assumption has important consequences for the be-

havior of information monopolists.

This paper contributes to the literature on principals with limited commitment. Most of the

literature primarily focuses on common-prior environments in which some agents have private infor-

mation. (See Acharya and Ortner (2017); Bester and Strausz (2001); Krishna and Morgan (2008);

Doval and Skreta (2022).) By contrast, we explore the implications of limited commitment with

belief heterogeneity, absent any private information.

Our analysis combines tools from the literatures on dynamic programming (Stokey, 1989; Miao,

2020) and information design (Kamenica and Gentzkow, 2011; Rayo and Segal, 2010), and draws

particularly from the literature on dynamic information design (Ely, Frankel, and Kamenica, 2015;

Ely, 2017; Renault, Solan, and Vieille, 2017; Ely and Szydlowski, 2020; Bizzotto, Rüdiger, and

Vigier, 2021; Escudé and Sinander, 2023). Our paper closely relates to Che et al. (2023), which

explores a dynamic information design setting under limited commitment. We contribute to these

literatures by characterizing the “drift” of the agents’ posterior beliefs under prior disagreement.

This allows us to reduce the seller’s dynamic problem into a static Bayesian persuasion problem

with prior disagreement (Alonso and Câmara, 2016).

This paper fits into a broad literature that analyzes information markets. Initiated by the seminal
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work of Arrow (1973); Admati and Pfleiderer (1986) the literature has been recently extended by

Hörner and Skrzypacz (2016); Bergemann, Bonatti, and Smolin (2018); Bergemann and Bonatti

(2019); Ichihashi (2021); Ali, Haghpanah, Lin, and Siegel (2022); Zhong (2022); Bergemann, Bonatti,

and Gan (2022). Among these, the paper closest to this one is Hörner and Skrzypacz (2016). As in

their paper, the seller’s optimal selling scheme is a sequential procedure that gradually sells imperfect

signals. However, there are important differences. Their results apply to a model where (1) the

buyer’s decision problem has two actions and two states; (2) the seller has private information; (3)

the agents share a common prior; and (4) the seller has preferences about the action that the buyer

takes. In contrast, our paper studies settings in which: (1) the buyer faces an arbitrary decision

problem; (2) there is no private information; (3) there may be no common prior; and (4) the action

taken by the buyer has no impact on the seller’s payoffs.

Lastly, our paper is related to the literature that studies information monopolist offering free-

samples of information and data. Zheng and Chen (2021) study optimal free-sampling strategies in

settings with two periods. Our paper differs in that it allows for general T -period settings and does

not impose the free-sample restriction. (The seller can charge positive prices at any period.) We

show that in our main example free-sampling is the unique equilibrium strategy of the seller. So,

rather than exogenously imposing this restriction, free-sampling endogenously emerges. Drakopoulos

and Makhdoumi (2023) analyze a continuous-time environment in which (1) the state is normally

distributed, (2) the seller offers signals that follow an exogenous normal distribution, and (3) the

buyer communicates his private information to the seller. They restrict to a class of selling strategies

that offer (potentially free) signals at a constant rate and sells the entire data set at the end of the

interaction. Our paper differs in that (1) beliefs are arbitrary, (2) does not restrict the structure of

the signals, and (3) there is no private information.

Organization of the paper The remainder of the paper is organized as follows. In the next

section, we introduce the leading example. Section 3 lays out the model. In Section 4, we represent

the game as a dynamic programming problem, and characterize the equilibrium payoffs. In Section

5, we show that the seller strictly benefits from interacting over more periods, but that the revenue is

asymptotically bounded. Finally, Section 6 discusses some of our modeling assumptions. All proofs

are collected in the appendix.

2 Example

An information buyer (a manager of a firm) faces a decision problem under uncertainty. There are

two possible states: θ (the firm’s data is vulnerable) and θ (the firm’s data is safe). Denote the state

space as Θ = {θ, θ}. The set of actions is A = {U ,N}, where U denotes updating the firm’s firewall

and N denotes not updating the firewall.

Assume that the information buyer has a budget of 1 to cover the cost of a security update. If

the buyer updates the firewall, no breach occurs, and their final payoff is zero. If the buyer does not

update the firewall and the state is θ, there is no breach, and the buyer retains their budget of 1.

However, if the buyer does not update and the state is θ, a breach occurs, resulting in a cost of 2
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and a final payoff of -1. Thus, U is the right action for θ and N is the right action for θ.

The buyer’s payoff function u : A×Θ → R is summarized in the table below.

u U N
θ 0 1

θ 0 -1

Table 1 Buyer’s utility function

The buyer is uncertain about the true state. Let νb ∈ (0, 1) be the buyer’s prior belief of state

θ. Notice that, absent any information, the buyer prefers N if νb ≥ 1
2 and U if νb ≤ 1

2 . Figure 2.1

describes the buyer’s expected utility from choosing optimally.

Figure 2.1 Expected utility of the buyer

For each prior belief νb ∈ (0, 1), we can compute the buyer’s value of observing the state. This

value is the difference between the dotted line and the buyer’s expected utility represented by the

blue and red lines in Figure 2.1. So, the buyer’s value of fully observing the state is given by:

V (νb) =

νb if νb ≤ 1
2

1− νb otherwise

Figure 2.2 illustrates the function V (·) in terms of the prior belief νb. Notice, the buyer places

a higher value for priors that are closer to 1
2 , where the buyer is more uncertain about the state of

the world.

Figure 2.2 Buyer’s value of observing the state for prior belief νb

Amonopolistic information seller has access to “experiments” or “tests” that can fully or partially

reveal the state of the world. The seller has a prior belief νs ∈ (0, 1) that the state is θ. Importantly,
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we allow νs to be different from νb. The agents’ prior beliefs are transparent to them and there is

no private information.

Fix a set of signals M . An experiment is a stochastic mapping π : Θ → ∆M that describes the

probability of each signal conditional on each state. We assume that both agents agree about the

probabilities described by π.

The agents interact in two periods. In each period t, the seller offers an experiment πt at a

fixed price pt ≥ 0. If the buyer purchases the experiment, she pays the price pt to the seller, and

both agents observe the realized signal mt ∈ M . This gives rise to some posterior beliefs that are

consistent with Bayes’ rule.

At each period t, the seller commits to honor the priced experiment (πt, pt) offered to the buyer.

That is, the seller commits to charge pt and truthfully reveal the realized signal mt of the experiment

πt. The seller cannot further commit to transfers that are contingent upon the state or the signal

realization, or to provide any priced experiment at a future period.2

2.1 Common Prior

We start our analysis with the benchmark case where the buyer and the seller agree about their

prior beliefs regarding the state.

Proposition 2.1. If νb = νs, then the seller’s maximum expected revenue is V (νb). In particular,

it is optimal to offer an experiment that completely reveals the state in the first period.

A fully revealing experiment in the first period gives the seller a maximum payoff of V (νb). More-

over, under a common prior, the seller cannot exceed this revenue by selling information sequentially.

To see this, suppose that the seller’s expected revenue is higher than V (νb). Since the agents share

the same prior, the agents agree about the probability of any outcome of the experiment. Conse-

quently, if the seller expects to receive a higher revenue than V (νb) then the buyer expects to pay

more than V (νb), a payment higher than her willingness to pay for full disclosure. Consequently,

the buyer is better off by not participating in the seller’s scheme.

2.2 Prior Disagreement

We now consider a setting in which the agents have prior disagreement stemming from overconfidence

in the sense of Grubb (2009). Consider the case in which the seller’s and the buyer’s prior belief

about θ are νs = 0.5 and νb = 0.9, respectively. Notice that the agents not only disagree about

their beliefs, they also disagree about the value of information. From the seller’s point of view, the

value of information is V (0.5) = 0.5. However, the buyer is overconfident and is willing to pay only

V (0.9) = 0.1 for fully observing the state. As a result, the maximum price the seller can charge in

one period is p = 0.1, even though the seller believes that the information has a higher value.

2See Section 6.2 for a discussion of this assumption.
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Figure 2.3 Value of information under prior disagreement

We show that the seller can strictly increase her revenue by sequentially selling information in two

periods. The first experiment partially reveals the state and has zero price, i.e., it is a free sample.

This experiment is described by a set of signals M = {m,m} and signal mapping π : Θ → ∆(M)

given by the table below:

π(m | θ) m m

θ 1
9

8
9

θ 1 0

Using Bayes’ rule, the posterior probability that the buyer assigns to state θ after each signal is

µb(m) =
0.9 · 8

9

0.9 · 8
9 + 0.1 · 0

= 1 and µb(m) =
0.9 · 1

9

0.9 · 1
9 + 0.1 · 1

= 1
2 .

The experiment is tailored so that it maximizes the probability that the buyer has the posterior

probability µb = 0.5, which leads to the highest valuation of information. An illustration of the

“posterior spread” of the free sample is given in Figure 2.4 below.

Figure 2.4 buyer’s new beliefs after the free sample experiment

Note, after receiving signal m, the buyer becomes certain that the state is θ, eliminating the

need to purchase additional information. However, after receiving signal m, the buyer’s uncertainty

increases. Moreover, after signal m, the buyer is willing to buy a second experiment that fully reveals

the state for p = 1
2 .

Notice that the agents disagree about the probability of the outcomes of the experiment. While

the buyer believes that the probability of m is 1
10 · 1 + 9

10 · 1
9 = 1

5 , the seller believes that such
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probability is 0.5 · 1+0.5 · 1
9 = 5

9 . After such a signal, the seller charges a fully revealing experiment

at price 1
2 . Hence, the seller’s expected revenue under the dynamic selling scheme is 5

9 ·
1
2 = 5

18 ≈ 0.27,

which is higher than the revenue from selling the information in a single period, V (0.9) = 0.1.

The increase in revenue can be interpreted as an exploitation of the buyer’s “incorrect” prior

belief.3 When the information buyer is overconfident, he underestimates the probability of state θ

and, consequently, the probability of receiving a low signal m. Thus, the free sample moves the

buyer’s beliefs closer to 1
2 , increasing (on average) the buyer’s value for fully observing the state.

This, in turn, allows to raise the price of full disclosure and increases expected revenue to 5
18 . Our

main results imply that 5
18 is the maximum revenue that can be achieved in two periods, and that

revenue increases by selling information in three or more periods.

3 Model

Throughout the paper, take the following conventions. Endow a compact metric space C with its

Borel sigma-algebra. Denote by ∆C the set of probability measures on C and endow ∆C with the

topology of weak convergence. Denote the interior of ∆C by int∆C. For each c ∈ C write δc ∈ ∆C

for the probability measure that assigns probability one to the singleton {c}.

3.1 Environment

There are two agents, the buyer (denoted by b) and the seller (denoted by s). The buyer faces an

individual decision problem described by a finite state space Θ, a compact set of actions A, and a

continuous utility function u : A×Θ → R. We assume that there are θ, θ′ ∈ Θ such that

argmax
a∈A

u(a, θ)∩ argmax
a∈A

u(a, θ′) = ∅.

In this sense, the problem is not trivial, and the buyer strictly benefits from observing the state.

Each agent i ∈ {s, b} has a prior belief νi ∈ int∆Θ about the state. The agents’ prior beliefs are

transparent to them. That is, the agents’ beliefs are described by a type structure (Θ, (Ti, βi)i∈{s,b}),

where (1) each type set Ti is a singleton, and (2) each belief mapping βi : Ti → ∆(Θ×T−i) satisfies

margΘβi(ti) = νi. Note, in particular, that the agents do not have private information. So, if

νb = νs the agents share a common prior. If νb ̸= νs, then the agents agree to disagree about their

priors.

3.2 Interaction

We consider a dynamic game in which the seller sequentially offers information to a buyer. Infor-

mation is revealed by implementing the experiments (in the sense of Blackwell (1951, 1953)) that

the buyer chooses to purchase.

3The buyer’s beliefs are “incorrect” from the seller’s subjective point of view. In the same way as Grubb (2009) the
seller’s payoffs are computed using the seller’s prior belief.
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The timing is as follows. Nature first chooses a state of the world θ ∈ Θ. Agents do not directly

observe the state during the interaction. After the state is realized, there is a finite sequence of

periods that are indexed (backward) by t = T, T−1, . . . , 1, 0. The number of periods T is exogenous.

In each period t > 0 the agents trade information and in the last period t = 0, the buyer takes an

action. So, t reflects the number of periods left before the buyer faces her decision problem.

We assume that there is a finite set of signals M that satisfies |M | ≥ |Θ|.4 At each period

t > 0, the seller makes a take-it-or-leave-it offer to the buyer, consisting of a priced experiment

Et = (πt, pt), where πt : Θ → ∆M is an experiment, and pt is the experiment’s price. The

experiment πt describes how signals are distributed conditional on the state. Importantly, the

agents agree about the conditional distribution of signals πt. The buyer observes Et and decides

whether to accept or reject it. If Et is accepted, the buyer pays the price pt to the seller, the

experiment πt is implemented, both agents observe the realized signal mt ∈ M , and period t − 1

starts. If Et is rejected, no transfer is made, the experiment is not implemented, and period t − 1

starts. In the last period, t = 0, the buyer decides what action a ∈ A to take. Once the game is

over, the state θ is revealed and the buyer receives utility u(a, θ).

To isolate the strategic effects of selling information, we assume that (1) there is no time-

discounting, (2) the seller can implement any sequence of experiments without incurring any cost,

and (3) the seller’s payoff does not depend either on the state or on the action the receiver takes.5

Thus, the seller only cares about maximizing her total revenue given by
∑T

t=1 p
t1{Et is accepted}.

The buyer has quasilinear preferences regarding the decision problem and the payments made to the

seller. So, at the end of the interaction, the buyer’s total utility is u(a, θ)−
∑T

t=1 p
t1{Et is accepted}.

The seller has limited commitment power. Within each period t, the seller commits to honor the

priced experiment Et = (πt, pt), provided that the buyer accepts it. That is, the seller commits to

charge pt and truthfully reveal the realized signal of the experiment πt. The seller cannot further

commit to transfers or future priced experiments that are contingent upon the state θ or the signal

realization mt.6

3.3 Histories, Strategies, and Equilibrium

Write E for the set of all priced experiments. A history for the seller at period T > t ≥ 1 is a

sequence ht
s = {(Et′ , ct

′
,mt′(ct

′
))}t+1

t′=T , where Et′ ∈ E is the experiment offered at time t′, and

ct
′ ∈ {accept, reject} is the buyer’s choice. The entry mt′(ct

′
) ∈ Supp (πt′) is the signal generated

by πt′ provided that ct
′
=accept, and mt′(ct

′
) = ∅ otherwise. A history for the buyer at period

T ≤ t ≤ 1 is a sequence ht
b = {ht

s, E
t}, describing the seller’s history ht

s up to that period and the

priced experiment Et that the seller offers at period t. Write Ht
i for i’s set of histories at period

t ≥ 1 and set HT
s = {∅}. Write Hi :=

⋃1
t=T Ht

i for i’s set of histories prior to the last period t = 0.

A trading history is a sequence h0 = {(Et′ , ct
′
,mt′(ct

′
))}1t′=T . Denote by H0 the set of all trading

histories.

4Assuming that M is finite simplifies the analysis by avoiding updating in zero probability events. Assuming that M
is finite does not affect the results. (See Part (i) of Lemma 4.3.)

5Section 6.3 discusses the environment in which agents discount the future. Section 6.4 discusses the environment in
which the seller faces non-zero costs for implementing the experiments.

6See Section 6.2 for a discussion of this assumption.
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A behavior strategy for the seller is a mapping σ : Hs → ∆E that associates a priced

experiment with each history in Hs. A behavior strategy for the buyer is a pair (c, α) where

c : Hb → ∆{accept, reject} is an acceptance rule and α : H0 → ∆A is a final action rule. So, for

each buyer’s history ht
b = (ht

s, E
t) ∈ Hb, c(ht

b) prescribes whether to accept or reject the priced

experiment Et given the seller’s history ht
s; and, for each h0 ∈ H0, α(h0) prescribes the action to

take after acquiring the information induced by the history h0.

In this game the agents have no private information and all signals are public. Hence, we employ

subgame perfect equilibrium (SPE) as solution concept. Discussion 6.1 discusses how this solution

concept is equivalent to strong perfect Bayesian equilibrium (SPBE).

4 A Dynamic Programming Approach

To analyze equilibrium behavior, we employ a dynamic programming approach that characterizes

(1) how the agents’ beliefs evolve after any sequence of experiments and (2) how equilibrium payoffs

and behavior depend on such beliefs at any history.

4.1 Posterior Dynamics

Before describing the strategic behavior of the agents, we first describe the dynamics of the agents’

posteriors after observing any sequence of signal realizations.

For each period t ∈ {T, . . . , 1}, write µt
i ∈ ∆Θ for i’s beliefs at the beginning of period t. Hence,

each experiment πt and signal mt ∈ Suppπt induce an agent i’s posterior belief µt−1
i , following

Bayesian updating.

We first describe how the agents’ posterior beliefs evolve. To do so, for each belief µ ∈ ∆Θ,

write PS[µ] := {τ ∈ ∆(∆Θ) : Eτ [µ
′] = µ} for the set of posterior spreads of µ. Assuming that agent

i has belief µt
i at time t, each experiment Et = (πt, pt) induces a posterior spread τi ∈ PS[µt

i] for

agent i. Moreover, each posterior spread τi ∈ PS[µt
i] such that |Supp (τi)| ≤ M is induced by some

experiment πt : Θ → ∆(M). (See Kamenica and Gentzkow (2011).)

For each θ ∈ Θ, write r(θ) = νs(θ)
νb(θ)

for the agents’ likelihood ratio of state θ. Notice that, given the

agents’ prior beliefs are in the interior of the simplex, the vector of likelihood ratios r := (r(θ))θ∈Θ

is well defined. Let g : ∆Θ → ∆Θ be given by

g(µ)(θ) :=
r(θ)µ(θ)

r · µ
.

Notice, the mapping g is the identity if and only if the agents share a common prior. This mapping

describes the relation of the agents’ beliefs along the entire interaction. To see this, consider an

experiment ET = (πT , pT ) in the first period T . The mapping g links the seller’s posterior with the

buyer’s posterior. That is, after any signal realization mT ∈ SuppπT , the agents’ posterior beliefs

satisfy µT−1
s = g(µT−1

b ). (See Proposition 1 in Alonso and Câmara (2016).) Furthermore, since any

sequence of experiments is itself an experiment, the relation µt
s = g(µt

b) continues to hold at each

subsequent period t ≥ 0 after any sequence of experiments and realized signals.
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The mapping g allows to characterize the behavior and the outcomes of both agents in terms of

the posterior of just one agent. We pick the buyer’s belief as a state variable and study how this

belief influences the agents’ behavior and payoffs.7

4.2 Posterior Drifts

Describing the agents’ equilibrium behavior requires understanding not only how beliefs differ after

each signal, but also how the agents disagree about the likelihood of the realization of such posterior

beliefs. Assume that, at some period t > 0 the agents have beliefs (µt
b, µ

t
s) with µt

s = g(µt
b).

Notice, after the realization of experiment πt, the agents not only disagree about the posterior

beliefs (µt−1
s ̸= µt−1

b ) at period t − 1 but also about the likelihood of the realization of each pair

(µt−1
b , µt−1

s ). That is, before the implementation of πt, the seller believes that some posterior pairs

(µt−1
b , µt−1

s ) are more likely than what the buyer believes.

To describe this disagreement, fix a buyer’s belief µt
b and define ρ(· | µt

b) : ∆Θ → R by

ρ(µt−1
b | µt

b) :=
r · µt−1

b

r · µt
b

,

where r is the vector of likelihood ratios given by the priors (νs, νb). The following lemma shows

that the mapping ρ(· | µt
b) captures the agents’ disagreement about their posteriors at period t− 1,

provided that the buyer’s belief at period t is µt
b.

Lemma 4.1. Assume that at period t the agents have prior beliefs (µt
b, µ

t
s) with µt

s = g(µt
b). If πt

is an experiment such that for each agent i ∈ {s, b} induces a posterior spread τi ∈ PS[µt
i], then for

each posterior µt−1
b ∈ ∆Θ,

τs(g(µ
t−1
b )) = τb(µ

t−1
b )ρ(µt−1

b | µt
b).

Lemma 4.1 describes the agents’ disagreement about the likelihood of their posterior beliefs. To

illustrate this, fix an experiment πt and let τb ∈ PS[µt
b] be the buyer’s posterior spread it induces.

Fix a belief µt
b ∈ ∆Θ and write Hρ>1(µ

t
b) := {µt−1

b ∈ ∆Θ | ρ(µt−1
b | µt

b) > 1} for the posterior

beliefs that the seller deems more likely as compared to the buyer. Notice, since the function

ρ(µt−1
b | µt

b) is linear in µt−1
b , the set Hρ>1(µ

t
b) is an open half-space. Figure 4.1 illustrates this

open half-space as a shaded area of the simplex. Intuitively, if an experiment induces a posterior

spread τb ∈ PS[µt
b] such that Supp (τb) ∩Hρ>1(µ

t
b) ̸= ∅, then the seller expects the average buyer’s

posterior to “drift” towards the region Hρ>1(µ
t
b). This has an important implication: while the

buyer’s Bayesian plausibility condition holds from the buyer’s perspective, it does not hold from

the seller’s perspective. The next sections will show how this drift affects equilibrium payoffs and

behavior.

7The analysis is analogous if the analyst chooses the seller’s belief as the state variable.
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Figure 4.1 Illustration of the set Hρ>1(µ
t
b).

4.3 Dynamic Programming: Last Period

We proceed by backward induction to characterize payoffs and behavior in the sequential game. We

start by finding the experiment that the seller offers at period t = 1 after any history.

The buyer’s value of each posterior belief is key in characterizing the equilibrium payoffs. With

this in mind, write µ0
b ∈ ∆Θ for the buyer’s posterior belief at period t = 0 and write

U(µ0
b) = max

a∈A
Eµ0

b
[u(a, θ)]

for the buyer’s expected payoff when he has posterior belief µ0
b .

Lemma 4.2. The function U(·) is continuous and convex.

Following Blackwell (1951, 1953), Lemma 4.2 implies that the buyer is weakly better off under

any posterior spread and, hence, is weakly better off by obtaining more information. Assume that

the buyer has belief µ1
b at period t = 1. Notice, the buyer’s willingness to pay for a posterior spread

τb ∈ PS[µ1
b ] is non-negative and is given by Eτb [U(µ0

b)]− U(µ1
b). Therefore,

V 1(µ1
b) := sup

τb∈PS[µ1
b]

Eτb [U(µ0
b)]− U(µ1

b)

is the seller’s maximum revenue that can be achieved in a single period, provided that the buyer has

belief µ1
b ∈ ∆Θ. Moreover, since U is convex, the supremum defining V 1 is achieved by the posterior

spread of a fully revealing experiment. Thus,

V 1(µ1
b) = Ū · µ1

b − U(µ1
b),

where Ū = (U(δθ))θ∈Θ denotes the vector of maximum utilities at each state. Note, Lemma 4.2

implies that V 1 is a continuous, non-negative, and concave mapping such that V 1(δθ) = 0 for

each θ ∈ Θ. Moreover, because the buyer’s decision problem is not trivial, V 1(µt
b) > 0 for each

µt
b ∈ int∆Θ.
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Notice, given a buyer’s belief µ1
b , the agents’ behavior in the last period is strategically equivalent

to a setting with only one period in which the buyer has prior belief νb = µ1
b . The following result

characterizes behavior and payoffs for one-period protocols.

Theorem 4.1. Assume there is only one period. There exists an SPE that satisfies the following:

(i) The seller offers a fully revealing experiment,

(ii) the buyer accepts the offer with probability one,

(iii) the seller has expected payoff V 1(νb), and

(iv) the buyer has expected payoff U(νb).

Moreover, each SPE satisfies properties (ii)-(iv).8

Theorem 4.1 characterize the unique equilibrium payoffs of the one-period game in terms of the

model’s primitives (A, u) and νb.
9 Notice that, in the one-period game, the seller’s prior does not

play a role. Hence, belief disagreements become relevant only in sequential-selling protocols.

The proof of Theorem 4.1 follows from a standard argument used in ultimatum-style games. In

any SPE, the seller offers the best experiment at the maximum price that the buyer would accept.

Each strategy profile in which there is positive probability that the buyer does not accept the offer

is not an SPE. Under such a strategy profile, the seller would have incentives to deviate to a fully

disclosing experiment at a slightly lower price.

4.4 Dynamic Programming: Previous Periods

This section characterizes equilibrium payoffs by using a backward induction argument. Fix a period

t > 1, a belief µt ∈ ∆Θ, and a posterior spread τb ∈ PS[µt]. Write τ̃b ∈ ∆(∆Θ) for the distribution

of beliefs such that τ̃b(µ
t−1
b ) := τb(µ

t−1
b )ρ(µt−1

b | µt
b). By Lemma 4.1, τ̃b describes the seller’s ex-ante

beliefs about the buyer’s posterior µt−1
b after observing some experiment πt. Call τ̃b the posterior

spread τb from the seller’s perspective.

We inductively define a sequence of real mappings (V t)t∈N defined on ∆Θ. Assume that V t−1 :

∆Θ → R is well-defined and write

V t(µt
b) := sup

τb∈PS[µt
b]

(
Eτb [U(µt−1

b )]− U(µt
b) + Eτ̃b [V

t−1(µt−1
b )]

)
,

where τ̃b is the posterior spread τb from the seller’s perspective.

We will show that the mapping V t captures the seller’s maximum total revenue that she can

extract when there are t > 1 periods remaining and the buyer has belief µt
b ∈ ∆Θ. (Recall that the

seller has belief µt
s = g(µt

b).) To see this, assume that the seller offers an experiment that induces

a posterior spread τb ∈ PS[µt
b]. The first component, Eτb [U(µt−1

b )] − U(µt
b), captures the seller’s

present revenue: the buyer’s willingness to pay for an experiment that induces τb at the current

belief µt
b. This relies on the fact that each agent anticipates that the buyer’s continuation value

8Notice, if there are some θ, θ′ ∈ Θ such that argmaxa∈A u(a, θ) = argmaxa∈A u(a, θ′), then there exists an optimal
experiment that pools states θ and θ′ into a single signal m ∈ M . Observe that, conditional on signal m, the buyer
has no value from observing the true state. Therefore, condition (i) does not hold for some SPE.

9Indeed, the functions U and V 1 are defined by the decision problem (A, u).
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for the next period t− 1 is U(µt−1
b ). The second component, Eτ̃b [V

t−1(µt−1
b )], captures the seller’s

future revenue: the sum of expected transfers from optimally selling information in the remaining

t − 1 periods. Importantly, while the expectation of the first component is based on the buyer’s

posterior spread τb, the expectation of the second component is based on τ̃b—which captures the

buyer’s posterior spread from the seller’s perspective. The difference between τ̃b and τb is the key

driver of our results.

Notice that in principle, the supremum defining V t may not be attained at some period t. We

show that this is not the case. Moreover, we show that the optimization problem associated to

V t(µt
b) can be written as a standard Bayesian persuasion problem (Kamenica and Gentzkow, 2011).

To do so, fix µt
b ∈ ∆Θ and define the auxiliary mapping Λt(· | µt

b) : ∆Θ → R as

Λt(µt−1
b | µt

b) := U(µt−1
b ) + V t−1(µt−1

b )ρ(µt−1
b | µt

b).

The following Lemma describes the value V t(µt
b) as a standard concavification problem for the

objective Λt(· | µt
b).

Lemma 4.3. For each t > 1 and each µt
b ∈ ∆Θ,

V t(µt
b) = sup

τb∈PS[µt
b]

Eτb [Λ
t(µt−1

b | µt
b)]− U(µt

b).

Moreover,

(i) For each µt
b ∈ ∆Θ, the supremum defining V t(µt

b) is achieved for some posterior spread τb ∈
PS[µt

b] that has at most |Θ| elements in its support.

(ii) The mapping V t(·) is continuous.

(iii) The mapping V t(·) satisfies V t+1(·) ≥ V t(·) and V t(δθ) = 0 for each θ ∈ Θ.

Lemma 4.3 states that V t(µt
b) is the value of a well-defined finite-dimensional Bayesian persuasion

problem. Thus, the supremum defining V t(µt
b) can be found by computing the concave envelope

of Λt(· | µt
b) evaluated at the belief µt−1

b = µt
b. Moreover, part (i) indicates that the supremum is

achieved by an experiment with at most |Θ| signals. So, provided that |M | ≥ |Θ|, there is some

experiment πt : Θ → ∆M that induces the optimal posterior spread. Part (ii) shows that V t is

continuous and therefore bounded. Part (iii) shows that the seller weakly benefits from having extra

periods and that the future revenue is zero if the buyer becomes certain about the state.

Theorem 4.2. Assume there are T periods. There exists an SPE that satisfies the following:

(i) On the equilibrium path the buyer accepts each offer with probability one,

(ii) the seller has expected payoff V T (νb), and

(iii) the buyer has expected payoff U(νb).

Moreover, each SPE satisfies these properties.

Theorem 4.2 characterizes the unique equilibrium payoffs of the T -period game in terms of

the agent’s prior beliefs. The proof follows an inductive argument reminiscent of those used in

ultimatum-style games. Fix a history that induces buyer’s belief µt
b at period t. An inductive
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argument shows that in each SPE the agents anticipate that the buyer’s continuation value is given

by U(µt−1
b ). So, the seller takes this buyer’s outside option as given and offers an experiment that

maximizes current and future payments described by the expression defining V t(µt
b). Overall, this

results in an expected payoff V T (νb) for the seller and an expected payoff of U(νb) for the buyer.

Notice, as in standard ultimatum-style games, the buyer accepts all offers on the equilibrium path.

If, with positive probability, the buyer does not accept the offer, then the seller would have incentives

to deviate to a lower price which the buyer accepts with probability one.

Observe that each history ht
s ∈ Hs induces an information-selling game of t periods. Hence, the

results of Theorem 4.2 extend to all such induced subgames, even those outside the equilibrium path.

So, each history ht
s ∈ Hs in which the buyer’s initial belief is µt

b, the buyer accepts the equilibrium

seller’s offer with probability one, and the seller’s and buyer’s continuation expected payoffs are

V t(µt
b) and U(µt

b), respectively.

4.5 Example Revisited

We now apply the dynamic programming approach to analyze the example of Section 2. Recall that

in this example the agents’ priors are (νb(θ), νs(θ)) = (0.9, 0.5) and the value function U is piecewise

linear.

We first characterize the case in which the agents have two periods to trade information. In the

first period t = 2, the seller seeks an experiment that in expectation maximizes the expected value

of the objective

Λ2(· | νb) := U(·) + V 1(·)ρ(· | νb).

For each x ∈ [0, 1], write µx for the belief such that µx(θ) = x. Notice that for these prior beliefs

ρ(µx | νb) > 1 if and only if x < 0.9. So, the seller believes that the buyer’s posteriors µx with

x < 0.9 are more likely relative to the buyer. Hence, the seller can tailor an experiment that drives

the average buyer’s posterior towards posteriors µx with x < 0.9. Figure 4.2 plots the mapping

Λ2(· | νb) (in blue) and its concave envelope (in red dashed lines).

Figure 4.2 Mapping Λ2(· | νb) and its concave envelope.

Notice, the posterior spread τ ∈ PS[νb] that maximizes the objective Eτ [Λ
2(µ1

b | νb)] is such that

Supp (τ) = {µ0.5, µ1}. Moreover, the maximum price that the seller can achieve for the associated
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experiment is p1 = Eτ [U(µ1
b)] − U(νb) = 0. (Recall that U(·) is linear from µ0.5 to µ1.) Therefore,

provided there are two periods, the selling scheme with free sample described in Section 2 maximizes

the seller’s revenue and provides an expected revenue of V 2(νb) =
5
18 .

One can apply the dynamic programming approach to analyze the example for the case in which

there are three periods. In this case, the optimal information-selling scheme has the following

features: In the first period, the seller provides a free sample experiment that induces a posterior

spread τ3b ∈ PS[νb] such that Supp (τ3b ) = {µ0.5, µ1}. If the posterior µ0.5 is realized in the second

period, then the seller offers an experiment inducing a posterior spread τ2b ∈ PS[µ0.5] such that

Supp (τ2b ) = {µx, µ1} for some x ≈ 0.3. If the posterior µx is realized in the last period, the seller

finally offers an experiment that fully reveals the state of the world. Notice, if at some period the

posterior µ1 is realized, then the buyer does not purchase further information.

Figure 4.3 Mappings V t in terms of µb(θ) given that priors are (νb, νs) = (0.9, 0.5).

The example can be easily extended to a sequential game with an arbitrary finite number of pe-

riods. By applying the concave envelope approach on the associated function Λt, one can iteratively

compute the value functions (V t)t∈N and the optimal selling scheme for an arbitrary number of pe-

riods. Figure 4.3 illustrates the mappings V t(·) for t = 1 . . . , 9. The asymptotic limit limt→∞ V t(·)
is plotted in dashed lines. There are two important observations. First, at each period t > 0 and

each belief µb ∈ int∆Θ, V t+1(µb) > V t(µb). So, provided that there is information left to offer, the

seller strictly benefits from having more time to interact with the buyer. Second, the value func-

tions (V t)t∈N are bounded and converge to a continuous function. Section 5 shows that these two

phenomena emerge in all environments with prior disagreement regardless of the buyer’s decision

problem (Θ, A, u), and the agents’ prior beliefs (νb, νs).

5 Main Results

Theorem 4.2 describes the seller’s payoffs in terms of the mapping V T . This section explores the

properties of the mappings (V t)t∈N as a way to describe the payoffs and behavior of the sequential

game with an arbitrary number of periods.
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Write C for the set of real continuous functions defined in ∆Θ and write

F = {V ∈ C : V is non-negative and V (δθ) = 0 for each θ ∈ Θ}.

Note that Lemma 4.3 and 4.2 imply that V t ∈ F for each t ∈ N. Define the functional ϕ : F → F
as follows:

ϕ(V )(µb) := sup
τ∈PS[µb]

Eτ [U(µ′
b) + V (µ′

b)ρ(µ
′
b | µb)]− U(µb).

The functional ϕ is well-defined because ϕ(V ) ∈ F for each V ∈ F . (See Lemma A.2 in the

appendix). This functional identifies the mappings (V t)t∈N in the sense that V t+1 = ϕt(V 1) for each

t ∈ N. Consequently, features of the agents’ payoffs and behavior are derived from the monotonicity

properties of the functional ϕ. (Lemma A.3 in the appendix describes these properties.)

5.1 Impact of Time

Theorem 4.2 shows that, while the buyer’s expected utility remains unaffected, the seller’s expected

revenue may increase with the length of the interaction. Moreover, in the example of Section 2, the

seller strictly benefits from having an additional period to trade information. This section explores

the benefits of extra trading periods for general environments.

Write D+ := {µb ∈ ∆Θ : µb ̸= g(µb) and V 1(µb) > 0} for the set of beliefs where the agents

disagree and the buyer has a positive value for information. Lemma A.6 in the appendix shows that

(1) if νs ̸= νb, then int∆Θ ⊆ D+, and (2) if νs = νb then D+ = ∅.10 Moreover. Lemma A.7 shows

that D+ = {µb ∈ ∆Θ : V 2(µb) > V 1(µb)}. Our main result shows that D+ characterizes the beliefs

for which the mappings V t(·) strictly increase in t.

Theorem 5.1. The following holds for each t ∈ N and each µb ∈ ∆Θ:

(i) If µb /∈ D+, then V t+1(µb) = V t(µb).

(ii) If µb ∈ D+, then V t+1(µb) > V t(µb).

Theorem 5.1 follows from the monotonicity properties of the functional ϕ. Such properties imply

that D+ = {µb ∈ ∆Θ : ϕ(V 2)(µb) > ϕ(V 1)(µb)}. An inductive argument shows the result holds for

all t ∈ N.
Observe that Theorem 5.1 characterizes the seller’s equilibrium payoffs for each belief µb, in-

cluding the exogenous prior belief νb. Moreover, it provides a sharp difference between the case

of common prior and the case of prior disagreement. Notice, under a common prior D+ = ∅.
Consequently, V T+1(νb) = V T (νb) = . . . = V 1(νb), implying that no selling strategy surpasses an

experiment that fully reveals the state in the first period. By contrast, under prior disagreement

νb ∈ D+. As a result, V T+1(νb) > V T (νb) > . . . > V 1(νb) > 0, showing that the seller’s expected

revenue strictly increases in the total number of periods, T .

This result not only characterizes the equilibrium payoffs but also identifies features of the exper-

iments that the seller offers at any history in the game. Note, since fully revealing the state at any

10Notice that the set D+ depend on both, the decision problem (Θ, A, u) and the prior beliefs (νb, νs).
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stage yields a payoff of V 1(µt
b), it is strictly suboptimal to fully reveal the state whenever µt

b ∈ D+

and t > 1. This implies the following corollary.

Corollary 5.1. Assume that νs ̸= νb and T > 1. At each SPE the first experiment offered by

the seller is not fully revealing. Moreover, if at some history at period t > 1, the buyer has belief

µt
b ∈ D+, then the seller does not offer a fully revealing experiment.

Intuitively, Theorem 5.1 and Corollary 5.1 follow from the interplay between selling information in

the current period versus future periods. On the one hand, the sequential framework allows the seller

to steer the buyer’s beliefs toward paths in which the seller expects larger future payments. On the

other hand, this drift comes with the cost of depleting the ‘stock’ of information available for future

interactions. So, revealing too much information diminishes the available information for future

sales, and withholding too much information decreases the posterior drift. Consequently, the optimal

revenue is not achieved at extremes—neither through full disclosure nor complete withholding—but

rather through an experiment that partially reveals information.

5.2 Asymptotic Payoffs

This section identifies the marginal effect of time on the seller’s revenue for environments in which

the agents interact in an asymptotically large number of periods.

In dynamic settings, long-run outcomes are usually characterized by the convergence properties

of Banach contractions. By contrast, here the functional ϕ is not a Banach contraction.11 Despite

this, we show that the set of fixed points of ϕ characterizes the agents’ asymptotic payoffs.

Lemma 5.1. Fix θ̂ ∈ argmaxθ∈Θ r(θ) and B : ∆Θ → R be defined by B(µb) := V 1(µb)ρ(δθ̂ | µb).

The following statements hold:

(i) The mapping B is a fixed point of ϕ.

(ii) For each µb ∈ ∆Θ, B(µb) ≥ V 1(µb).

Lemma 5.1 constructs a fixed point of ϕ that (1) has a closed-form expression in terms of

primitives, and (2) dominates the value function V 1. Moreover, due to the monotonicity properties

of ϕ, the fact that B dominates V 1 implies that B dominates all the mappings (V t)t∈N. (See Lemma

A.3.) This shows that the benefits from using a sequential scheme are bounded by the multiplicative

factor ρ(δθ̂ | νb).12 Moreover, this result implies that for each µb ∈ ∆Θ, the sequence V t(µb) is

monotone and bounded, and thus, its limit exists. The following result shows that the point-wise

limit of the sequence (V t)t∈N defines a well-behaved mapping.

Theorem 5.2. There exists a mapping V ∞ : ∆Θ → R so that, for each µb ∈ ∆Θ,

V ∞(µb) = lim
t→∞

V t(µb).

Moreover, V ∞ ∈ F and V ∞ is a fixed point of ϕ.

11The mapping ϕ has multiple fixed points and hence is not a Banach contraction. For instance, let B ∈ F be the
mapping described by Lemma 5.1. For each λ ≥ 1, the mapping λB is a fixed point of ϕ.

12Notice that ρ(δθ̂ | νb) > 1 if and only if the agents have prior disagreement.
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Theorem 5.2 states that the seller’s asymptotic revenue is captured by V ∞, a bounded and

continuous mapping. This result implies that the seller’s marginal revenue with respect to T sharply

decreases. Intuitively, the optimal strategy reveals most of the information in the early periods,

depleting the stock of information available for the final extra periods. Consequently, when T is

large, an additional period generates almost no extra value for the seller.

6 Discussion

6.1 Subgame Perfect Equilibrium

As described in Section 3, the agents in this game have no private information. Moreover, since prior

beliefs are transparent and all signals are public, the agents’ posterior beliefs remain transparent

after any sequence of experiments.

We impose the restriction that agents “cannot signal what they do not know.” That is, the

actions of the co-player do not convey information about the state θ. At each history, the agents’

beliefs about the state depend solely on the signals selected by chance. More specifically, given

a stream of experiments π = (πt)t∈T purchased by the buyer at periods T ⊆ {1, 2, . . . , T} the

conditional distribution of the stream of signals m = (mt)t∈T is given by

Pπ[m | θ] :=
∏
t∈T

πt(mt | θ).

Therefore, since i has prior νi ∈ int∆Θ, i’s posterior beliefs at period t̂ < min(T ) are given by

µt̂
i(θ) =

νi(θ)Pπ[m | θ]∑
θ′∈Θ

νi(θ
′)Pπ[m | θ′]

. (1)

Absent any experiment, the belief of each agent i remains fixed at the prior νi, even after a deviation

of the co-player.

In this game, the agents’ posterior beliefs are transparent after any history. Hence, subgame

perfect equilibrium is equivalent to strong perfect Bayesian equilibrium (SPBE) under the following

requirements: First, at each history that implements some experiments, the agents’ beliefs are

described by Equation (1). Second, at each history in which the buyer does not purchase any

experiment, the belief of agent i equals its prior νi.

6.2 Commitment Power

The paper explores a setting in which the seller is endowed with limited commitment power. At

each period t the seller commits to honor the priced experiment (πt, pt). So, if the buyer accepts to

buy πt at price pt, the seller commits to truthfully reveal the signal mt that πt generates. The seller

has no further commitment after the signal mt is revealed. In particular, the seller cannot further

commit to transfers or future priced experiments (πt′ , pt
′
) ∈ E that are contingent on the state θ or

19



the signal realization mt.

Offering a fixed price for a “consultation” is a widespread practice for experts offering advice.

Technicians, dietitians, attorneys, financial advisors, and other consultants typically set their fees

prior the consultations, and the fees are not influenced by the specific nature of the advice and

information dispensed. Moreover, consistent with our findings, in some instances professionals offer

“complimentary consultations” as a way to engage with clients.

The widespread adoption of fixed-price consultations establishes the commitment assumptions

studied here as a natural benchmark. Changing these assumptions induces different results. For

instance, if (1) the seller could commit to transfers that depend on the signal realization, and (2) the

amount of these transfers could be arbitrarily large, then the seller can achieve unbounded (subjec-

tive) expected revenue. Arbitrarily large levels of revenue can be achieved by designing a contingent

contract that allows the agents to bet about the state at arbitrarily high stakes. Nevertheless, such

contracts require the seller paying to the buyer a large transfer after some realizations of the test,

behavior that is not usual for professionals selling advice.

6.3 Discounting the Future

This paper investigates the effects of belief disagreement in information markets. Our main finding

reveals that the seller benefits from longer interactions. To isolate the effects of prior disagreement,

we abstract from other factors that could influence our dynamic setting, such as time discounting

and costs of experiments.

Incorporating a discounting parameter (δ ∈ (0, 1)) makes deferring the payments less attractive

for the seller. As a result, the seller refrains from exploiting trading opportunities in the long run

and instead, opts to disclose more information in early stages. At one extreme, when the seller

is highly impatient (δ ≈ 0), the optimal strategy entails disclosing all information within a single

period. At the opposite extreme, with a sufficiently patient seller (δ ≈ 1), our characterization

closely approximates the equilibrium payoffs and behavior of the agents.

6.4 Costly experiments

This paper assumes that the seller faces no cost for executing experiments. This benchmark covers

multiple economic interactions in which the marginal cost per experiment is negligible. For instance,

software firms incur zero marginal costs for running antivirus tests.

We anticipate that adding costs to the experiments will the experiments that the seller offers

in equilibrium. If the seller faces a small fixed cost per experiment, the seller will reveal more

information (in comparison with no-cost environment) with the goal of decreasing the expected

number of experiments executed. If the cost is sufficiently big, then the seller will opt to offer only

fully-revealing experiments.
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A Appendix

A.1 Proofs of Section 2

Proof of Proposition 2.1. The statement directly follows from Theorems 4.2 and 5.1 part (i).

A.2 Proofs of Section 4

Proof of Lemma 4.1. Assume that at the beginning of period t, the agents’ beliefs are (µt
b, µ

t
s)

with µt
s = g(µt

b). Fix an experiment πt. Let τi ∈ PS[µi] be the associated agent i’s posterior spread.

Write M [µt−1
i | µt

i] ⊆ M for the set of messages that induce posterior µt−1
i on i given that i has

prior µt
i. Then, notice that, for each i

τi(µ
t−1
i ) =

∑
m∈M [µt−1

i |µt
i]

∑
θ∈Θ

πt(m | θ)µt
i(θ).

Moreover, for each posterior belief µt−1
b , M [g(µt−1

b )|µt
b] = M [µt−1

s |µt
s]. Notice, Bayes rule states

that for each m ∈ M [µt−1
i | µt

i],

πt(m | θ)µt
i(θ) = µt−1

i (θ)

(∑
θ∈Θ

πt(m | θ)µt
i(θ)

)

In addition, recall that

µt−1
s (θ) = g(µt−1

b )(θ) =
r(θ)µt−1

b (θ)

r · µt−1
b

. (2)

Notice, since Suppµt
s = Suppµt

b, it follows that

τs(µ
t−1
s ) =

∑
m∈M [µt−1

s |µt
s]

∑
θ∈Suppµt

s

πt(m | θ)µt
s(θ)

=
∑

m∈M [µt−1
s |µt

s]

∑
θ∈Suppµt

s

(
µt−1
b (θ)

µt
b(θ)

∑
θ′∈Θ

πt(m | θ′)µt
b(θ

′)

)
µt
s(θ)

=
∑

θ∈Suppµt
s

µt−1
b (θ)µt

s(θ)

µt
b(θ)

 ∑
m∈M [µt−1

s |µt
s]

∑
θ′∈Θ

πt(m | θ′)µt
b(θ

′)


=

∑
θ∈Suppµt

s

µt−1
b (θ)µt

s(θ)

µt
b(θ)

τb(µ
t−1
b )

=
∑

θ∈Suppµt
s

r(θ)µt−1
b (θ)

r · µt
b

τb(µ
t−1
b )

=
r · µt−1

b

r · µt
b

τb(µ
t−1
b ),
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where the fourth equality follows from Equation (2).

Proof of Lemma 4.2. Fix an action a ∈ A. Notice that the function ua : ∆Θ → R defined by

ua(µ) =
∑

θ∈Θ u(a, θ)µ(θ) is linear, which implies that it is convex and continuous. Hence, observe

that U(µ) = maxa∈A ua(µ), so U is convex and continuous.

Proof of Theorem 4.1. First, we show existence. Let E1 = (π1, p1) be a priced experiment that

fully reveals the state at price p1 = V 1(νb) = U · νb − U(νb). Write σ for the seller’s strategy that

selects E1 at the root of the game. Write c : E → ∆{accept, reject} for the buyer’s strategy such

that satisfies the following: for each priced experiment E′ = (π′, p′) ∈ E ,

c(E′)(accept) =

1 if p′ ≤ Eτ ′ [U(µ0
b)]− U(νb)

0 otherwise,

where τ ′ ∈ PS[νb] is the posterior spread induced by π′. Finally, write α for the strategy profile such

that prescribes an optimal action given the buyer’s beliefs. That is, for each history h0 ∈ H0,

Supp (α(h0)) ⊆ argmax
a∈A

Eµ0
b
[u(a, θ)], (3)

where µ0
b is the buyer’s belief at history h0. Notice, by construction, under the profile (σ, (c, α)) the

buyer and the seller have no profitable deviation at any history, so it is an SPE. Moreover, note that

(σ, (c, α)) satisfies properties (i)-(iv).

Now, we show that each SPE satisfies properties (ii)-(iv). Fix an SPE (σ, (c, α)). Notice, each

history h0 ∈ H0 must satisfy Equation (3). Hence, after any history, the buyer’s value from accepting

an experiment E = (π, p) ∈ E is Eτ [U(µ0
b)] − U(νb), where τ ∈ PS[νb] is the posterior spread

induced by π. Consequently, it must be that c(E) = 1 if p < Eτ [U(µ0
b)] − U(νb), and c(E) = 0 if

p > Eτ [U(µ0
b)]− U(νb).

In the case where p = Eτ [U(µ0
b)]−U(νb), the buyer is indifferent between accepting and rejecting,

so any randomization c(E) ∈ ∆{accept, reject} is optimal. We will show that the buyer must accept

at least one fully revealing experiment at a price V 1(νb) with probability one. Suppose, by way of

contradiction, that he rejects with positive probability all such priced experiments. Consequently,

the seller cannot achieve an expected revenue of V 1(νb). However, he can achieve any strictly lower

payoff since the buyer would accept with probability one any fully revealing experiment at price p,

for any p ∈ R+ with p < V 1(νb). Therefore, the seller has no optimal choice, which contradicts that

the strategy profile (σ, (c, α)) is a SPE.

As a result, the buyer must accept at least one fully revealing experiment at a price V 1(νb)

with probability one. Since such a priced experiment yields the highest possible expected revenue,

then σ must prescribe choosing one of such experiments. In conclusion, any SPE satisfies properties

(ii)-(iv).

Lemma A.1. Fix a mapping f : ∆Θ × ∆Θ → R and let F : ∆Θ → R be defined by F (µ) =

supτ∈PS[µ] Eµ′∼τ [f(µ
′, µ)]. If f is continuous, then F is continuous.

Proof. Fix µ ∈ ∆Θ. We show that F is continuous at µ. Fix a sequence (µk)k∈N such that µk ∈ ∆Θ

24



and limµk = µ. We show limk→∞ F (µk) = F (µ). We divide the proof into two steps. Step one

shows that lim supk→∞ V (µk) ≤ V (µ) and step two shows that lim infk→∞ V (µk) ≤ V (µ).

Step 1. Notice, since f is continuous, there is some τ ∈ PS[µ] such that Eτ [f(µ
′, µ)] = F (µ) (See

Kamenica and Gentzkow (2011).) Moreover, there exist an affine mapping L : ∆Θ → R such that

(i) L(µ) = Eτ [f(µ
′, µ)] = F (µ).

(ii) L(µ′) ≥ f(µ′, µ) for each µ′ ∈ ∆(Θ).

Notice, since the sets ∆Θ and ∆Θ×∆Θ is compact, the mappings L and f are uniformly continuous.

Hence, there is some δ > 0 such that ||µ − µk||∞ < δ implies that for each µ′ ∈ ∆Θ, |f(µ′, µk) −
f(µ′, µ)| < ε

2 and |L(µk)− L(µ)| < ε
2 . So,

F (µk) = sup
τ ′∈PS[µk]

Eµ′∼τ ′ [f(µ′, µk)]

≤ sup
τ ′∈PS[µk]

Eµ′∼τ ′ [L(µ′) + ε
2 ]

= L(µk) +
ε
2

< L(µ) + ε

= F (µ) + ε.

Note, since ε > 0 is arbitrary and limk→∞ µk = µ, it follows that lim supk→∞ F (µk) ≤ F (µ).

Step 2. Write τ ∈ PS[µ] for the posterior spread that satisfies F (µ) = Eµ′∼τ [f(µ
′, µ)]. Note, by

Kamenica and Gentzkow (2011), there is some finite message space M with |M | ≤ |Θ| and some

experiment π : Θ → ∆(M) such that π induces τ . Let τk ∈ PS[µk] be the posterior spread induced

by π under prior belief µk.

For each m ∈ M and each prior belief µ′ write Pπ[m | µ′] for the probability of m under prior

belief µ′ ∈ ∆Θ. Likewise, write Pm(µ′) ∈ ∆Θ for the posterior belief induced by a message m ∈ M

and prior belief µ′ ∈ ∆Θ. Notice that Pm(µ′) and Pπ[m | µ′] are continuous at µ. Hence, for

each m ∈ M , limk→∞Pπ[m | µk] = Pπ[m | µ] and limk→∞ Pm(µk) = Pm(µ). Moreover, since f is

continuous,

lim
k→∞

Pπ[m | µk]f(Pm(µk), µk) = Pπ[m | µ]f(Pm(µ), µ).

Therefore,

lim
k→∞

Eµ′∼τk [f(µ
′, µk)] = lim

k→∞

∑
µ′∈Supp (τk)

τk(µ
′)f(µ′, µk)

= lim
k→∞

∑
m∈M

Pπ[m | µk]f(Pm(µk), µk)

=
∑
m∈M

Pπ[m | µ]f(Pm(µ), µ)

= F (µ).
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Finally, notice that for each k ∈ N,

F (µk) = sup
τ ′∈PS[µk]

Eµ′∼τ ′ [f(µ′, µk)] ≥ Eµ′∼τk [f(µ
′, µk)]

Thus, it follows that lim infk→∞ F (µk) ≥ F (µ), as desired.

Proof of Lemma 4.3. Fix t > 1 and µt
b ∈ ∆Θ. Lemma 4.1 ensures that for any posterior

spread τb ∈ PS[µt
b] the associated seller’s beliefs about the buyer’s posterior µt−1

b are given by

τ̃b(µ
t−1
b ) = τb(µ

t−1
b )ρ(µt−1

b | µt
b). As a result,

Eτ̃b [V
t−1(µt−1

b )] =
∑

µt−1
b ∈Supp τ̃b

V 1(µt−1
b )τ(µt−1

b )ρ(µt−1
b | µt

b) = Eτb [V
1(µt−1

b )ρ(µt−1
b | µt

b)].

Therefore,

Eτb [U(µt−1
b )]− U(µt

b) + Eτ̃b [V
t−1(µt−1

b )] = Eτb [U(µt−1
b ) + V 1(µt−1

b )ρ(µt−1
b | µt

b)]− U(µt
b)

= Eτb [Λ
t(µt−1

b | µt
b)]− U(µt

b).

From here we conclude that

V t(µt
b) = sup

τb∈PS[µt
b]

Eτb [Λ
t(µt−1

b | µt
b)]− U(µt

b).

In addition, notice that condition (i) follows from Proposition 9 in the working paper version

of Kamenica and Gentzkow (2011). As for condition (ii), observe that Lemmas A.1 and 4.2 ensure

that supτb∈PS[µt
b]
Eτb [Λ

t(µt−1
b | µt

b)] and U(µt
b) are continuous on µt

b. Hence, V t(µt
b) is a continuous

mapping.

Finally, to prove condition (iii), we first show that V t+1 ≥ V t by arguing that a seller with

t+1 periods can offer a non-informative experiment in period t+1 and then behave optimally from

period t on. Second, we show that V t(δθ) = 0 for each t ∈ N and each θ ∈ Θ through an inductive

argument.

First, fix µ ∈ ∆Θ and t ≥ 1. Notice that Λt+1(µ | µ) = U(µ) + V t(µ)ρ(µ | µ) = U(µ) + V t(µ).

In addition, observe that δµ ∈ PS[µ]. As a result,

V t+1(µ) = sup
τ∈PS[µ]

Eτ [Λ
t+1(µ′ | µ)]− U(µ)

≥ Eδµ [Λ
t+1(µ′ | µ)]− U(µ)

= Λt+1(µ | µ)− U(µ)

= V t(µ).

Second, fix θ ∈ Θ. We will show that V 1(δθ) = 0 for each t ∈ N. We proceed by induction.

Notice that V 1(δθ) = U · δθ − U(δθ) = 0. Now, fix t ≥ 1. Assume that V t(δθ) = 0. Since δθ is an

extreme point of ∆Θ, it cannot be written as a non-trivial convex combination of elements of ∆Θ.
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Hence, PS[δθ] = {δθ}. As a result,

V t+1(δθ) = sup
τ∈PS[µ]

Eτ [Λ
t+1(µ′ | µ)]− U(µ)

= Λt(δθ | δθ)]− U(δθ)

= V t(δθ)

= 0.

In conclusion, V t(δθ) = 0 for each t ∈ N.

Proof of Theorem 4.2. We divide the proof into two steps. Step 1 shows existence of a SPE

that satisfies conditions (i)-(iii). Step 2 shows that each SPE satisfies conditions (i)-(iii).

Step 1. We proceed by induction on T . Notice that the base case (T = 1) is shown in Theorem

4.1.

Now we show the inductive step. Fix T ≥ 1. Assume that, for every pair of agents’ be-

liefs (µT
b , µ

T
s ) with µT

s = g(µT
b ) at the beginning of period T , there exists an SPE (σ′, (c′, α′))

as described in Theorem 4.2 in the game with T periods. We will use these strategies to con-

struct the SPE in the game of T + 1 periods. For any seller’s (non-initial) history at period

T + 1 > t ≥ 1, ht
s = {(Et′ , ct

′
,mt′(ct

′
)}t+1

t′=T+1, write ĥt
s = {(Et′ , ct

′
,mt′(ct

′
)}t+1

t′=T for the as-

sociated pruned seller’s history, which describes the history of play in the subgame that starts

after {∅, (ET+1, cT+1,mT+1(cT+1)}. Similarly, for any buyer’s history ht
b, write ĥt

b for the asso-

ciated pruned buyer’s history that describes the history of play in the subgame that starts after

{∅, (ET+1, cT+1,mT+1(cT+1), ET }. Last, for every trading history h0, write ĥ0 for the associ-

ated pruned trading history that describes the history of play in the subgame that starts after

{∅, (ET+1, cT+1,mT+1(cT+1)}.
Now, let π̃T+1 be the experiment inducing an optimal posterior spread τ̃ such that (1) |Supp (τ̃)| ≤

|Θ| and (2) V t+1(νb) = Eτ [Λ
t+1(µ′ | νb)] − U(νb). Set p̃T+1 = Eτ̃ [U(µT

b )] − U(νb), and ẼT+1 =

(π̃T+1, p̃T+1). Consider the seller’s strategy given by:

σ(ht
s) =

ẼT+1 if t = T + 1

σ′(ĥt
s) if t ≤ T.

The buyer’s acceptance rule defined by:

c(ht
b)(accept) =


1 if ht

b = {(πT+1′, pT+1′)} and pT+1′ ≤ Eτ ′ [U(µT
b )]− U(νb)

0 if ht
b = {(πT+1′, pT+1′)} and pT+1′ > Eτ ′ [U(µT

b )]− U(νb)

c′(ĥt
b) if t ≤ T.

where c′(ĥt
b) is the acceptance rule in the SPE associated with the initial buyer’s belief induced by

the subgame that starts after {∅, (ET+1, cT+1,mT+1(cT+1)}. Likewise, the buyer’s final action rule

given by α(h0) = α′(ĥ0) where α′(ĥ0) is the final choice rule in the SPE associated to the initial
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buyer’s belief induced by the subgame that starts after {∅, (ET+1, cT+1,mT+1(cT+1)}.
To show that (σ, (c, α)) is an SPE, we appeal to the one-shot deviation principle. Since (σ′, (c′, α′))

is an SPE for any game of T periods, then no single-deviation is optimal at any history after period

T .

Now, a buyer’s history at period T+1 is characterized by an initial priced experiment (πT+1, pT+1)

offered. In the case that pT+1 ≤ Eτ [U(µT
b )]−U(νb), a buyer’s deviation would imply a positive prob-

ability of rejection, which implies that the buyer’s continuation payoffs will be a convex combination

of U(νb) and Eτ [U(µT
b )] − pT+1, which will be weakly smaller than the payoff from sticking to c,

Eτ [U(µT
b )] − pT+1. In the case that pT+1 > Eτ [U(µT

b )]− U(νb), a buyer’s deviation would imply a

positive probability of accepting the experiment, which implies that the buyer’s continuation payoffs

will be a convex combination between U(νb) and Eτ [U(µT
b )] − pT+1, which will be weakly smaller

than the payoff from sticking to c, U(νb).

Finally, a one-shot deviation for the seller at the root of the game would imply choosing other

priced experiment than ẼT+1. A deviation to the priced experiment (πT+1, pT+1) would imply a

seller’s expected revenue of either pT+1+Eτ̃ [V
T (µT

b )] ≤ Eτ [U(µT
b )]−U(νb)+Eτ̃ [V

T (µT
b )] or V

T (νTb ),

which, either way, is lower than V T+1(νb) = supτb∈PS[νb]
Eτb [U(µT

b )]−U(νb) +Eτ̃b [V
T (µT

b )]. Hence,

the seller has no incentives to deviate once at the root and then conform back to σ.

Step 2. Fix a SPE (σ, (c, α)). To see that (σ, (c, α)) satisfies condition (i), first notice that in

any SPE, it must be that Suppα(h0) ⊆ argmaxa∈A Eµ0
b
[u(a, θ)] = argmaxa∈A U(µb

0) where µ0
b is

the buyer’s belief at history h0. Therefore, at any trading history ht
b = {ht

s, E
t} ∈ Hb in which

the buyer’s initial belief is µt
b, the buyer’s value of accepting the priced experiment Et = (πt, pt) is

Eτ [U(µt−1
b )]− U(µt

b), where τ is the posterior spread induced by πt. As a result, it must be that

c(ht
b)(accept) =

1 if pt < Eτ [U(µt−1
b )]− U(µt

b)

0 if pt > Eτ [U(µt−1
b )]− U(µt

b)
.

In the case that pt = Eτ [U(µt−1
b )] − U(µt

b), the receiver is indifferent between accepting and re-

jecting the offer, so any randomization is optimal. We will show that the buyer must accept with

probability one at least one experiment inducing the posterior spread τb that defines V t(µt
b) at a

price pt = Eτb [U(µt−1
b )] − U(µt

b). Suppose, by contradiction, that the buyer rejects all such priced

experiments with positive probability. Hence, the seller cannot achieve an expected revenue stream

of V t(µt
b). However, he can achieve any strictly lower payoff stream since the buyer would accept

with probability one any priced experiment inducing posterior spread τb at price p, for any p ∈ R
with p < Eτb [U(µt−1

b )]− U(µt
b). Therefore, the seller has no optimal choice, which contradicts that

the strategy profile (σ, (c, α)) is a SPE.

As a result, the buyer must accept at least one such priced experiment with probability one.

Since this experiment yields the highest possible expected revenue stream, then σ must prescribe

choosing one of such experiments. In conclusion, any SPE satisfies property (i). Notice that this

implies that the seller’s expected revenue stream at any given history ht
s is given by V t(µt

b) where µ
t
b

is the buyer’s initial belief at period t in such a history. In particular, the seller’s ex-ante expected
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revenue is V T (νb), so property (ii) holds. In addition, observe that at any on-path buyer’s history

ht
b with initial buyer’s belief µt

b, we have that the buyer accepts the seller’s offered experiment at a

price pt = Eτb [U(µt−1
b )]−U(µt

b). This implies that the buyer’s continuation payoffs at such a history

are U(µt
b). In particular, the ex-ante buyer’s expected payoff is U(νb). In other words, any SPE

satisfies property (iii).

A.3 Proofs of Section 5

Lemma A.2. Assume that V ∈ F . Then, the mapping ϕ(V ) : ∆Θ → R is continuous and satisfies

ϕ(V )(δθ) = 0 for each θ ∈ Θ.

Proof. Notice that V ∈ F implies V is continuous. Hence, the mapping defined by f(µ′, µ) =

U(µ′) + V (µ′)ρ(µ′ | µ) is continuous. Thus, the mapping ϕ(V )(·) : ∆Θ → R is continuous. (See

Lemma A.1.)

Fix θ ∈ Θ. Notice τ ∈ PS[δθ] if and only if Supp (τ) = {δθ}. Hence

ϕ(V )(δθ) = Eτ [U(µ′) + V (µ′)ρ(µ′ | δθ)] = U(δθ) + V (δθ)− U(δθ) = 0.

Therefore, ϕ(V ) ∈ F .

Lemma A.3. Fix a pair of mappings V,W ∈ F such that W (µ) ≥ V (µ) for each µ ∈ ∆Θ, and

write S = {µ ∈ ∆Θ : V (µ) = W (µ)}. The following properties hold:

(i) For each µ ∈ ∆Θ, ϕ(V )(µ) ≥ V (µ).

(ii) For each µ ∈ ∆Θ, ϕ(W )(µ) ≥ ϕ(V )(µ).

(iii) If ϕ(W )(µ) = ϕ(V )(µ), then there is some τ ∈ PS[µ] with Supp (τ) ⊆ S such that

ϕ(V )(µ) = Eτ [U(µ′) + V (µ′)ρ(µ′ | µ)]− U(µ) = ϕ(W )(µ) (4)

Proof. We first show part (i). Fix µ ∈ ∆Θ and V ∈ F . Since δµ ∈ PS[µ], then

ϕ(V )(µ) ≥ Eδµ [U(µ′) + V (µ′)ρ(µ′ | µ)]− U(µ)

= U(µ) + V (µ)ρ(µ | µ)− U(µ)

= V (µ).

We now show part (ii). Fix µ ∈ ∆Θ and notice that

ϕ(W )(µ) = sup
τ ′∈PS[µ]

Eτ ′ [U(µ′) +W (µ′)ρ(µ′ | µ)]− U(µ)

≥ sup
τ ′∈PS[µ]

Eτ ′ [U(µ′) + V (µ′)ρ(µ′ | µ)]− U(µ)

= ϕ(V )(µ).

Now we show part (iii). Assume that ϕ(W )(µ) = ϕ(V )(µ). Notice, since ϕ(V ) is continuous,

then U(µ′)+ϕ(V )(µ′)ρ(µ′ | µ) is continuous in µ′. Thus, there is some τ ∈ PS[µ] with finite support
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such that

ϕ(V )(µ) = max
τ ′∈PS[µ]

Eτ ′ [U(µ′) + V (µ′)ρ(µ′ | µ)] = Eτ [U(µ′) + V (µ′)ρ(µ′ | µ)] (5)

Thus,

ϕ(V )(µ) = Eτ [U(µ′) + V (µ′)ρ(µ′ | µ)]

≤ Eτ [U(µ′) +W (µ′)ρ(µ′ | µ)]

= max
τ ′∈PS[µ]

Eτ ′ [U(µ′) +W (µ′)ρ(µ′ | µ)]

≤ ϕ(W )(µ)

= ϕ(V )(µ),

which implies Equation (4). Moreover, if ϕ(V )(µ′) > V (µ′) for some µ′ ∈ Supp (τ), then we obtain

ϕ2(V )(µ) > ϕ(V )(µ), a contradiction. Thus, ϕ(V )(µ′) = V (µ′) for each µ′ ∈ Supp τ , as desired.

Lemma A.4. Fix µ ∈ ∆Θ. The following statements are equivalent:

(i) g(µ) = µ.

(ii) r(θ) = r(θ′) for each θ, θ′ ∈ Suppµ.

(iii) ρ(µ′ | µ) = 1 for each µ′ ∈ ∆Θ with Suppµ′ ⊆ Suppµ.

(iv) g(µ′) = µ′ for all µ′ ∈ ∆Θ with Suppµ′ ⊆ Suppµ.

Proof. Fix µ ∈ ∆Θ. We first prove that condition (i) is equivalent to condition (ii). Assume that

g(µ) = µ. Let θ ∈ Suppµ, then g(µ)(θ) = r(θ)µ(θ)
r·µ = µ(θ) > 0. This implies that r(θ) = r · µ,

which is independent of θ. Conversely, assume that for each θ ∈ Suppµ, r(θ) = c is constant. Then,

g(µ)(θ) = r(θ)µ(θ)
r·µ = cµ(θ)

c = µ(θ).

Now, we prove that condition (ii) implies conditions (iv) and (iii). Assume that r(θ) = c is

constant for all θ ∈ Suppµ. Fix µ′ ∈ ∆Suppµ. Then, Suppµ′ ⊂ Suppµ. Therefore, for each

θ ∈ Suppµ′ ⊂ Suppµ, we conclude that r(θ) = c. Hence, g(µ′) = µ′ given the equivalence between

conditions (i) and (ii). Moreover, ρ(µ′ | µ) = r·µ′

r·µ = c
c = 1.

Next, we show that condition (iii) implies condition (ii). Assume that ρ(µ′ | µ) = 1 for each

µ′ ∈ ∆Θ with Suppµ′ ⊂ Suppµ. Then, for any θ ∈ Suppµ, we have that 1 = ρ(δθ | µ) = r(θ)
r·µ .

Thus, r(θ) = r · µ is constant as it is independent of θ.

Finally, notice that condition (iv) implies condition (i) since Suppµ ⊂ Suppµ, so g(µ) = µ.

Lemma A.5. Fix µ ∈ ∆Θ. The following statements are equivalent:

(i) V 1(µ) = 0.

(ii) argmaxa∈A Eµ[u(a, θ)] ⊆ argmaxa∈A u(a, θ) for each θ ∈ Suppµ.

(iii) V 1(µ′) = 0 for every µ′ ∈ ∆Θ with Suppµ′ ⊆ Suppµ.

Proof. Fix µ ∈ ∆Θ. We first prove that parts (i) and (ii) are equivalent. First, suppose that

V 1(µ) = U · µ − U(µ) = 0. Fix θ ∈ Suppµ and a′ ∈ A. Assume, by contradiction, that a′ ∈
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argmaxa∈A Eµ[u(a, θ)] but a′ /∈ argmaxa∈A u(a, θ) for some θ ∈ Suppµ. Hence, U(δθ) > U(µ).

Since U(δθ′) ≥ U(µ), then U · µ > U(µ), a contradiction.

Conversely, assume that argmaxa∈A Eµ[u(a, θ)] ⊂ argmaxa∈A u(a, θ) for each θ ∈ Suppµ. Hence,

U(µ) = U(δθ) for all θ ∈ Suppµ. Finally, U · µ = U(µ) which is to say V 1(µ) = 0.

Now, we prove that part (ii) implies part (iii). Assume that for each θ ∈ Suppµ the following

is satisfied: argmaxa∈A Eµ[u(a, θ)] ⊂ argmaxa∈A u(a, θ). Fix µ′ ∈ ∆Θ with Suppµ′ ⊂ Suppµ,

and a′ ∈ argmaxa∈A Eµ[u(a, θ)]. Therefore, u(a′, θ) = U(δθ) for each θ ∈ Suppµ. As a result,

U · µ′ ≥ U(µ′) ≥ Eµ′ [u(a′, θ)] = Eµ′ [U(δθ)] = U · µ′. In conclusion, V 1(µ′) = 0.

Last, we prove that part (iii) implies part (i). Note, since Suppµ′ ⊆ Suppµ, then V 1(µ) = 0.

Lemma A.6.

(i) If νs = νb, then D+ = ∅.
(ii) If νs ̸= νb, then ∆Θ ⊆ D+.

Proof. First assume that νs = νb. This implies that g(µb) = µb for each µb. Thus D+ = ∅. Now

assume that νs = g(νb) ̸= νb and fix µb ∈ int∆θ. Notice, by Lemma A.4, g(µb) ̸= µb for each

µb ∈ int∆Θ. Notice, since the buyer’s decision problem is not trivial, there are some θ, θ′ ∈ Θ such

that argmaxa∈A u(a, θ) ∩ argmaxa∈A u(a, θ′) = ∅. Since Supp (µb) = Θ, it follows that V 1(µb) > 0.

(See Lemma A.5.) Therefore, intΘ ⊆ D+.

Lemma A.7. Fix µ ∈ ∆Θ. Then, µ ∈ D+ if and only if V 2(µ) > V 1(µ).

Proof. Let µ ∈ ∆Θ. First, assume that µ ∈ D+, which means that µ ̸= g(µ) and V 1(µ) > 0. We

first show that there is some τ ∈ PS[µ] such that Eτ [Λ
2(µ′ | µ)] > Eτ [U · µ′]. To show this, we will

show the following:

(i) There is some µ′ ∈ int (∆Suppµ), such that Λ2(µ′ | µ) > U · µ′.

(ii) For each θ ∈ Θ it follows that Λ2(δθ | µ) = U · δθ.
So, if τ ∈ PS[µ] is such that Supp τ = {µ′} ∪ {δθ : θ ∈ Θ}, then

V 2(µ) = sup
τ ′∈PS[µ]

Eτ ′ [Λ2(µ′ | µ)]− U(µ)

≥ Eτ [Λ
2(µ′ | µ)]− U(µ)

> U · µ− U(µ)

= V 1(µ),

as desired.

To show condition (i), notice that ∆Suppµ ̸⊂ Hρ=1(µ). (See Lemma A.4.) Moreover, for every

θ ∈ Θ for which g(µ)(θ) > µ(θ), it holds that δθ ∈ Hρ>1. Hence, by linearity of ρ , it follows that

Hρ>1 ∩ ∆Suppµ is non-empty and open relative to ∆Suppµ. Fix µ′ ∈ Hρ>1 ∩ ∆Suppµ. Notice,

that V 1(µ′) > 0. (See Lemma A.5.) Thus,

Λ2(µ′ | µ) = U(µ′) + V 1(µ′)ρ(µ′ | µ) > U(µ′) + V 1(µ′) = U · µ′.

31



To show condition (ii), fix θ ∈ Θ and notice that

Λ2(δθ | µ) = U(δθ) + V 1(δθ)ρ(δθ | µ) = U(δθ) = U · δθ.

Now we show the converse. Assume, by contrapositive, that µ /∈ D+. So, either V 1(µ) = 0 or

g(µ) = µ. First consider the case g(µ) = µ. Lemma A.4 shows that for for each τ ∈ PS[µ] and

µ′ ∈ Supp τ , it follows that ρ(µ′ | µ) = 1. Hence,

V 2(µ) = sup
τ∈PS[µ]

Eτ [U(µ′) + V 1(µ′)ρ(µ′ | µ)]− U(µ)

= sup
τ∈PS[µ]

Eτ [U(µ′) + V 1(µ)]− U(µ)

= sup
τ∈PS[µ]

Eτ [U · µ′]− U(µb)

= V 1(µ).

Consider the case V 1(µ) = 0. Then, Lemma A.5 shows that, for each τ ∈ PS[µ] and each

µ′ ∈ Supp τ it follows that V 1(µ′) = 0. Consequently,

V 2(µ) = sup
τ∈PS[µ]

Eτ [U(µ′) + V 1(µ′)ρ(µ′ | µ)]− U(µ)

= sup
τ∈PS[µ]

Eτ [U(µ′)]− U(µ)

= V 1(µ).

Therefore, µ /∈ D+ implies V 2(µ) = V 1(µ) as desired.

Proof of Theorem 5.1. We proceed by induction on t ∈ N. The base case t = 1 follows directly

from Lemma A.7. Fix t > 1 and assume that for each t ≥ t′ ≥ 1.

(i) V t′+1(µ′) = V t′(µ′) for each µ′ /∈ D+, and

(ii) V t′+1(µ′) > V t′(µ′) for each µ′ ∈ D+.

We will show that these two statements hold for t + 1. Notice that V t+2(µ′) ≥ V t+1(µ′) for each

µ′ ∈ ∆Θ (See Lemma 4.3). Thus, it suffices to show that that V t+2(µ′) > V t+1(µ′) if and only if

µ′ ∈ D+.

First consider the case µ /∈ D+. Note that Supp (τ)∩D+ = ∅ for each τ ∈ PS[µ]. (See Lemmata

A.4 and A.5). Therefore, for each τ ∈ PS[µ] and each µ′ ∈ Supp (τ), V t+1(µ′) = V t(µ′). This

implies that

V t+2(µ) = sup
τ∈PS[µ]

Eτ [U(µ′) + V t+1(µ′)ρ(µ′ | µ)]− U(µ)

= sup
τ∈PS[µ]

Eτ [U(µ′) + V t(µ′)ρ(µ′ | µ)]− U(µ)

= V t+1(µ),
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as desired.

Now consider the case µ ∈ D+. We show that V t+2(µ) > V t+1(µ) by contradiction. Suppose

ϕ(V t+1)(µ) = V t+2(µ) = V t+1(µ) = ϕ(V t)(µ). Then, by Lemma A.3, there is some τ ∈ PS[µ] such

that

V t+1(µ) = Eτ [U(µ′) + V t(µ′)ρ(µ′ | µ)]− U(µ) = V t+2(µ),

and Supp (τ) ⊆ {µ′ : V t+1(µ′) = V t(µ′)}. Moreover, by conditions (i) and (ii), it follows that

Supp (τ) ⊆ ∆Θ\D+ = {µ′ : V t(µ′) = V t−1(µ′)}.

Therefore,

V t+1(µ) = Eτ [U(µ′) + V t(µ′)ρ(µ′ | µ)]− U(µ)

= Eτ [U(µ′) + V t−1(µ′)ρ(µ′ | µ)]− U(µ)

≤ sup
τ∈PS[µ]

Eτ [U(µ′) + V t−1(µ′)ρ(µ′ | µ)]− U(µ)

= V t(µ).

Which contradicts condition (ii). Therefore, we conclude that V t+2(µ) > V t+1(µ), as desired.

Lemma A.8. Let θ̂ ∈ argmaxθ∈Θ{r(θ)}. Then, ρ(δθ̂ | µb) ≥ 1 for each µb ∈ ∆(Θ).

Proof. Note that, by definition of ρ, for each µb ∈ ∆Θ, ρ(δθ̂ | µb)ρ(µb | δθ̂) = 1. Hence, it suffices

to show that ρ(µb | δθ̂) ≤ 1 for each µb ∈ ∆Θ. Notice, for each θ ∈ Θ, ρ(δθ | δθ̂) =
r(θ)

r(θ̂)
≤ 1. Thus,

since ρ(µb | δθ̂) is linear in µb, if follows that ρ(µb | δθ̂) ≤ 1 for each µb ∈ ∆Θ.

Proof of Lemma 5.1. We first show part (i). Fix µb ∈ ∆(Θ). First we prove that for the mapping

ΛB(µ
′
b | µb) := U(µ′

b) +B(µ′
b) · ρ(µ′

b | µb)

is weakly concave in µ′
b. To show this, note that

ΛB(µ
′
b | µb) = U(µ′

b) +B(µ′
b) · ρ(µ′

b | µb)

= U(µ′
b) + V 1(µ′

b) · ρ(δθ̂ | µ′
b) · ρ(µ′

b | µb)

= U(µ′
b) + V 1(µ′) · ρ(δθ̂ | µb)

= U(µ′
b) +

(
λ
∑
θ

µ′
b(θ) · U(δθ)− U(µ′)

)
· ρ(δθ̂ | µb)

= −U(µ′
b)
(
ρ(δθ̂ | µb)− 1

)
+ ρ(δθ̂ | µb)

∑
θ∈Θ

µ′
b(θ) · U(δθ).

In addition, note that ρ(δθ̂ | µb) ≥ 1. (See Lemma A.8.) Hence, for each µb ∈ ∆(Θ), the mapping

ΛB(· | µB) is the sum of a weakly concave function and a linear function. Hence, it is weakly
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concave. Thus, for each µb,

sup
τ∈PS[µb]

Eτ [ΛB(µ
′
b | µb)] = ΛB(µb | µb).

We now show that B is a fixed point of ϕ. Fix µb ∈ ∆Θ and note that

ϕ(B)(µb) = sup
τ∈PS[µb]

Eτ [ΛB(µ
′
b | µb)]− U(µb)

= ΛB(µb | µb)− U(µb)

= B(µb) · ρ(µb | µb)

= B(µb),

where the third equality equation follows from definition of ΛB . This shows that B is a fixed point

of ϕ.

We now show part (ii). Fix µb ∈ ∆(Θ) and notice that ρ(δθ̂ | µb) ≥ 1. (See Lemma A.8). Hence,

B(µb) = V 1(µb) · ρ(δθ̂ | µb) ≥ V 1(µb), as desired.

Proof of Theorem 5.2. First we show that V t(µ) ≤ B(µ) for each t ∈ N and each belief

µ ∈ ∆(Θ). We proceed by induction. Notice that V 1(·) ≤ B(·) (See Lemma 5.1). Now, assume that

V t(·) ≤ B(·) for k ≥ 1. Therefore, by monotonicity of ϕ, for each µ ∈ ∆Θ, it follows that

V k+1(µ) = ϕ(V t)(µ) ≤ ϕ(B)(µ) = B(µ). (6)

(See Lemma A.3.)

This implies that (V t(µ))t∈N is a bounded increasing sequence and hence it has a limit. Write

V ∞(µ) := limt→∞ V t(µ).

We first will show that V ∞ satisfies the following: for each µb ∈ ∆Θ,

V ∞(µ) = sup
τ∈PS[µ]

Eτ [U(µ′) + V ∞(µ′) · ρ(µ′ | µ)]− U(µ). (7)

To show this, first fix τ ∈ PS[µ] Notice, since V 1 ≤ V ∞, it follows that

Eτ [U(µ′) + V t(µ′) · ρ(µ′ | µ)] ≤ Eτ [U(µ′) + V ∞(µ′) · ρ(µ′ | µ)]. (8)

In addition, notice that for each t ∈ N, the mapping U(µ′) + V t(µ′) · ρ(µ′ | µ) is bounded by

the continuous mapping U(µ′) + B(µ′) · ρ(µ′ | µ). (See Equation 6.) Then, by the Dominated

Convergence Theorem,

Eτ [U(µ′) + lim
t→∞

V t(µ′) · ρ(µ′ | µ)] = lim
t→∞

Eτ [U(µ′) + V t(µ′) · ρ(µ′ | µ)] (9)
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Finally, notice that, by definition of V t+1.

Eτ [U(µ′) + V t(µ′) · ρ(µ′ | µ)]− U(µ) ≤ V t+1(µ) (10)

Therefore,

V ∞(µ) = lim
t→∞

V t+1(µ)

= lim
t→∞

sup
τ∈PS[µ]

Eτ [U(µ′) + V t(µ′) · ρ(µ′ | µ)]− U(µ)

≤ sup
τ∈PS[µ]

Eτ [U(µ′) + V ∞(µ′) · ρ(µ′ | µ)]− U(µ)

= sup
τ∈PS[µ]

Eτ [U(µ′) + lim
t→∞

V t(µ′) · ρ(µ′ | µ)]− U(µ)

= sup
τ∈PS[µ]

lim
t→∞

Eτ [U(µ′) + V t(µ′) · ρ(µ′ | µ)]− U(µ)

≤ sup
τ∈PS[µ]

lim
t→∞

V t+1(µ)

= V ∞(µ),

where the first inequality follows from Equation(8), the fourth equality follows from Equation (9),

and the last inequality follows from Equation (10). This shows Equation (7).

Notice that V ∞(δθ) = 0 for each θ ∈ Θ. Thus, to show that V ∞ ∈ F is suffices to show that

V ∞ is continuous.

Fix µ ∈ ∆Θ and let (µk)k∈N be a sequence such that µk ∈ ∆Θ and limµk = µ. We show

limV ∞(µk) = V ∞(µ). We divide the proof into two steps. Step one shows that lim supk→∞ V ∞(µk) ≤
V (µ) and step two shows that lim infk→∞ V ∞(µk) ≤ V ∞(µ).

Step 1. Let f : ∆Θ×∆Θ → R given by f(µ′, µ) = U(µ′) + V ∞(µ′)ρ(µ′ | µ). Notice, by Equation

(7)

V ∞(µ) = sup
τ∈PS[µ]

Eτ [f(µ
′, µ)]− U(µ)

Notice that f is bounded since U(µ′) + V ∞(µ′)ρ(µ′ | µ) ≤ U(µ′) + B(µ′)ρ(µ′ | µ). Thus, there

exist an affine mapping L : ∆Θ → R such that

(i) L(µ′) ≥ f(µ′, µ) for each µ′ ∈ ∆(Θ).

(ii) L(µ) = supτ Eτ [f(µ
′, µ)].

Let M > 0 be a bound of V ∞(·). Since the set ∆Θ×∆Θ is compact, the mapping ρ is uniformly

continuous. Hence, there is some δ > 0 such that ||µ− µk||∞ < δ implies that for each µ′ ∈ ∆Θ,

ρ(µ′ | µk) < ρ(µ′ | µ) + ε
2M ,

Then, for each µ′ ∈ ∆Θ,

V ∞(µ′)ρ(µ′ | µk) < V ∞(µ′)ρ(µ′ | µ) + ε
2 .
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Thus,

f(µ′, µk) = U(µ′) + V ∞(µ′)ρ(µ′ | µk)

< U(µ′) + V ∞(µ′)ρ(µ′ | µ) + ϵ
2

= f(µ′, µ) + ϵ
2

≤ L(µ′) + ϵ
2 .

Consequently,

V ∞(µk) = sup
τ∈PS[µ]

Eτ [f(µ
′, µk)]− U(µk)

≤ sup
τ∈PS[µ]

Eτ [L(µ
′) + ε

2 ]− U(µ) + ε
2

= L(µ)− U(µ) + ε

= sup
τ

Eτ [f(µ
′, µ)]− U(µ) + ε

= V ∞(µ) + ε.

This implies that lim supk→∞ V ∞(µk) ≤ V ∞(µ) + ε. Moreover, since ε > 0 is arbitrary it follows

that lim supk→∞ V ∞(µk) ≤ V ∞(µ).

Step 2. Fix ε > 0. Notice, there is some K ∈ N such that V K(µ) > V ∞(µ) + ε
2 . Moreover, there is

some δ > 0 such that ||µk − µ||∞ < δ implies V K(µk) > V K(µ) + ε
2 . Therefore, if ||µk − µ||∞ < δ,

then

V ∞(µk) ≥ V K(µk) ≥ V K(µ)− ε
2 ≥ V ∞(µ)− ϵ.

Therefore, lim infk→∞ V ∞(µk) ≥ V ∞(µ) − ε. Moreover, since the ε > is arbitrary, it follows that

lim infk→∞ V ∞(µk) ≥ V ∞(µ).
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